82 research outputs found

    Interspecific competition between entomopathogenic nematodes (Steinernema) is modified by their bacterial symbionts (Xenorhabdus)

    Get PDF
    BACKGROUND: Symbioses between invertebrates and prokaryotes are biological systems of particular interest in order to study the evolution of mutualism. The symbioses between the entomopathogenic nematodes Steinernema and their bacterial symbiont Xenorhabdus are very tractable model systems. Previous studies demonstrated (i) a highly specialized relationship between each strain of nematodes and its naturally associated bacterial strain and (ii) that mutualism plays a role in several important life history traits of each partner such as access to insect host resources, dispersal and protection against various biotic and abiotic factors. The goal of the present study was to address the question of the impact of Xenorhabdus symbionts on the progression and outcome of interspecific competition between individuals belonging to different Steinernema species. For this, we monitored experimental interspecific competition between (i) two nematode species: S. carpocapsae and S. scapterisci and (ii) their respective symbionts: X. nematophila and X. innexi within an experimental insect-host (Galleria mellonella). Three conditions of competition between nematodes were tested: (i) infection of insects with aposymbiotic IJs (i.e. without symbiont) of both species (ii) infection of insects with aposymbiotic IJs of both species in presence of variable proportion of their two Xenorhabdus symbionts and (iii) infection of insects with symbiotic IJs (i.e. naturally associated with their symbionts) of both species. RESULTS: We found that both the progression and the outcome of interspecific competition between entomopathogenic nematodes were influenced by their bacterial symbionts. Thus, the results obtained with aposymbiotic nematodes were totally opposite to those obtained with symbiotic nematodes. Moreover, the experimental introduction of different ratios of Xenorhabdus symbionts in the insect-host during competition between Steinernema modified the proportion of each species in the adults and in the global offspring. CONCLUSION: We showed that Xenorhabdus symbionts modified the competition between their Steinernema associates. This suggests that Xenorhabdus not only provides Steinernema with access to food sources but also furnishes new abilities to deal with biotic parameters such as competitors

    Assessment of vector/host contact: comparison of animal-baited traps and UV-light/suction trap for collecting Culicoides biting midges (Diptera: Ceratopogonidae), vectors of Orbiviruses

    Get PDF
    BACKGROUND The emergence and massive spread of bluetongue in Western Europe during 2006-2008 had disastrous consequences for sheep and cattle production and confirmed the ability of Palaearctic Culicoides (Diptera: Ceratopogonidae) to transmit the virus. Some aspects of Culicoides ecology, especially host-seeking and feeding behaviors, remain insufficiently described due to the difficulty of collecting them directly on a bait animal, the most reliable method to evaluate biting rates.Our aim was to compare typical animal-baited traps (drop trap and direct aspiration) to both a new sticky cover trap and a UV-light/suction trap (the most commonly used method to collect Culicoides). METHODS/RESULTS Collections were made from 1.45 hours before sunset to 1.45 hours after sunset in June/July 2009 at an experimental sheep farm (INRA, Nouzilly, Western France), with 3 replicates of a 4 sitesĂ—4 traps randomized Latin square using one sheep per site. Collected Culicoides individuals were sorted morphologically to species, sex and physiological stages for females. Sibling species were identified using a molecular assay. A total of 534 Culicoides belonging to 17 species was collected. Abundance was maximal in the drop trap (232 females and 4 males from 10 species) whereas the diversity was the highest in the UV-light/suction trap (136 females and 5 males from 15 species). Significant between-trap differences abundance and parity rates were observed. CONCLUSIONS Only the direct aspiration collected exclusively host-seeking females, despite a concern that human manipulation may influence estimation of the biting rate. The sticky cover trap assessed accurately the biting rate of abundant species even if it might act as an interception trap. The drop trap collected the highest abundance of Culicoides and may have caught individuals not attracted by sheep but by its structure. Finally, abundances obtained using the UV-light/suction trap did not estimate accurately Culicoides biting rate.This study was funded partly by CIRAD and partly by the Ministry of Agriculture, Food, Fishing and Rural Affairs

    Host-Seeking Activity of Bluetongue Virus Vectors: Endo/Exophagy and Circadian Rhythm of Culicoides in Western Europe

    No full text
    Feeding success of free-living hematophagous insects depends on their ability to be active when hosts are available and to reach places where hosts are accessible. When the hematophagous insect is a vector of pathogens, determining the components of host-seeking behavior is of primary interest for the assessment of transmission risk. Our aim was to describe endo/exophagy and circadian host-seeking activity of Palaearctic Culicoides species, which are major biting pests and arbovirus vectors, using drop traps and suction traps baited with four sheep, as bluetongue virus hosts. Collections were carried out in the field, a largely-open stable and an enclosed stable during six collection periods of 24 hours in April/May, in late June and in September/October 2010 in western France. A total of 986 Culicoides belonging to 13 species, mainly C. brunnicans and C. obsoletus, was collected on animal baits. Culicoides brunnicans was clearly exophagic, whereas C. obsoletus was able to enter stables. Culicoides brunnicans exhibited a bimodal pattern of host-seeking activity with peaks just after sunrise and sunset. Culicoides obsoletus was active before sunset in spring and autumn and after sunset in summer, thus illustrating influence of other parameters than light, especially temperature. Description of host-seeking behaviors allowed us to discuss control strategies for transmission of Culicoides-borne pathogens, such as bluetongue virus. However, practical vector-control recommendations are difficult to provide because of the variation in the degree of endophagy and time of host-seeking activity.This study was funded by CIRAD, by the Ministe`re de l’agriculture, de l’alimentation, de la peˆche, de la ruralite´ et de l’ame´nagement du terroire and by the EU FP7-HEALTH-2010-single-stage grant 261504 EDENext. This paper is catalogued by the EDENext Steering Committee as EDENext032 (http://www.edenext. eu). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. No additional external funding received for this study

    Observatoire Scientifique en Appui à la GEstion de la Santé sur un territoire (OSAGE-S)

    Get PDF
    Dans le contexte « environnement-santé », l’équipe interdisciplinaire (biologistes, médecins, épidémiologistes, modélisateurs, écologues, géographes, informaticiens) qui travaille sur la dynamique de maladies infectieuses dans le Sud-Est asiatique, propose de mettre en commun la connaissance qu’elle a des agents biologiques pathogènes et des processus qui interviennent dans les milieux et les sociétés et de partager expériences de terrain, de laboratoire, clinique pour aborder les questions de recherche, de suivi des maladies et de gestion de la santé. Pour ce faire, l’idée d’une plateforme intégrative a été avancée et nous a permis de décliner la proposition de mise en œuvre d’un Observatoire Scientifique en Appui à la GEstion de la Santé sur un territoire (OSAGE-S). Les prémices de ce travail sont d’une part d’ordre générique et épistémologique : ils explicitent formellement la formule « environnement-santé » pour y positionner le pathosystème, l’environnement et l’observatoire ; d’autre part d’ordre opérationnel par explicitation du concept d’observatoire en appui à la gestion de la Santé. Par la suite nous illustrerons nos propos autour d’OSAGE-S, à partir d’une étude de cas, la maladie du Chikungunya en Indonésie.Within the “Health and Environment” framework, a group of scientists in disciplinary fields as diverse as biology, medical sciences, modelling, ecology, geography, computer sciences, are collaborating to study the dynamics of infectious diseases in Southeast Asia. In this paper they propose to pool their knowledge on biological pathogens, environment and societies and to share their field, laboratory and clinical expertise to address questions on research, disease monitoring and health management. An integrative platform has been suggested and organised in order to implement a Scientific Observatory (OSAGE-S), dedicated to supporting Health Management in a Territory. The first part of this work addresses generic and epistemological questions, formally explicits the formula “Health and Environment” in order to relate it to concepts such as « pathological system », « environment » and « observatory » ; the second part relates to further operational issues for the observatory concept dedicated to the support of Health management. Thereafter we illustrate our proposition with a case study, the Chikungunya disease in Indonesia

    Assessment of vector/host contact: comparison of animal-baited traps and UV-light/suction trap for collecting Culicoides biting midges (Diptera: Ceratopogonidae), vectors of Orbiviruses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The emergence and massive spread of bluetongue in Western Europe during 2006-2008 had disastrous consequences for sheep and cattle production and confirmed the ability of Palaearctic <it>Culicoides </it>(Diptera: Ceratopogonidae) to transmit the virus. Some aspects of <it>Culicoides </it>ecology, especially host-seeking and feeding behaviors, remain insufficiently described due to the difficulty of collecting them directly on a bait animal, the most reliable method to evaluate biting rates.</p> <p>Our aim was to compare typical animal-baited traps (drop trap and direct aspiration) to both a new sticky cover trap and a UV-light/suction trap (the most commonly used method to collect <it>Culicoides</it>).</p> <p>Methods/results</p> <p>Collections were made from 1.45 hours before sunset to 1.45 hours after sunset in June/July 2009 at an experimental sheep farm (INRA, Nouzilly, Western France), with 3 replicates of a 4 sites Ă— 4 traps randomized Latin square using one sheep per site. Collected <it>Culicoides </it>individuals were sorted morphologically to species, sex and physiological stages for females. Sibling species were identified using a molecular assay. A total of 534 <it>Culicoides </it>belonging to 17 species was collected. Abundance was maximal in the drop trap (232 females and 4 males from 10 species) whereas the diversity was the highest in the UV-light/suction trap (136 females and 5 males from 15 species). Significant between-trap differences abundance and parity rates were observed.</p> <p>Conclusions</p> <p>Only the direct aspiration collected exclusively host-seeking females, despite a concern that human manipulation may influence estimation of the biting rate. The sticky cover trap assessed accurately the biting rate of abundant species even if it might act as an interception trap. The drop trap collected the highest abundance of <it>Culicoides </it>and may have caught individuals not attracted by sheep but by its structure. Finally, abundances obtained using the UV-light/suction trap did not estimate accurately <it>Culicoides </it>biting rate.</p

    The Chemokine CXCL12 Is Essential for the Clearance of the Filaria Litomosoides sigmodontis in Resistant Mice

    Get PDF
    Litomosoides sigmodontis is a cause of filarial infection in rodents. Once infective larvae overcome the skin barrier, they enter the lymphatic system and then settle in the pleural cavity, causing soft tissue infection. The outcome of infection depends on the parasite's modulatory ability and also on the immune response of the infected host, which is influenced by its genetic background. The goal of this study was to determine whether host factors such as the chemokine axis CXCL12/CXCR4, which notably participates in the control of immune surveillance, can influence the outcome of the infection. We therefore set up comparative analyses of subcutaneous infection by L. sigmodontis in two inbred mouse strains with different outcomes: one susceptible strain (BALB/c) and one resistant strain (C57BL/6). We showed that rapid parasite clearance was associated with a L. sigmodontis-specific CXCL12-dependent cell response in C57BL/6 mice. CXCL12 was produced mainly by pleural mesothelial cells during infection. Conversely, the delayed parasite clearance in BALB/c mice was neither associated with an increase in CXCL12 levels nor with cell influx into the pleural cavity. Remarkably, interfering with the CXCL12/CXCR4 axis in both strains of mice delayed filarial development, as evidenced by the postponement of the fourth molting process. Furthermore, the in vitro growth of stage 4 filariae was favored by the addition of low amounts of CXCL12. The CXCL12/CXCR4 axis thus appears to have a dual effect on the L. sigmodontis life cycle: by acting as a host-cell restriction factor for infection, and as a growth factor for worms

    Les extraordinaires capacités des arbres

    No full text
    Article dans le Journal Le Monde du jeudi 14/05/202

    Posture control and skeletal mechanical acclimation in terrestrial plants: Implications for mechanical modeling of plant architecture

    No full text
    Self-supporting plant stems are slender, erect structures that remain standing while growing in highly variable mechanical environments. Such ability is not merely related to an adapted mechanical design in terms of material-specific stiffness and stem tapering. As many terrestrial standing animals do, plant stems regulate posture through active and coordinated control of motor systems and acclimate their skeletal growth to prevailing loads. This analogy probably results from mechanical challenges on standing organisms in an aerial environment with low buoyancy and high turbulence. But the continuous growth of plants submits them to a greater challenge. In response to these challenges, land plants implemented mixed skeletal and motor functions in the same anatomical elements. There are two types of kinematic design: (1) plants with localized active movement (arthrophytes) and (2) plants with continuously distributed active movements (contortionists). The control of these active supporting systems involves gravi- and mechanoperception, but little is known about their coordination at the whole plant level. This more active view of the control of plant growth and form has been insufficiently considered in the modeling of plant architecture. Progress in our understanding of plant posture and mechanical acclimation will require new biomechanical models of plant architectural development
    • …
    corecore