89 research outputs found

    Changes in Motor Unit Number Estimate and Forced Vital Capacity as Predictors of ALS Progression

    Get PDF
    Background: An independent measure of lower motor neuron function that can be monitored over time is essential to evaluating the effect of drugs or stem cell transplantation and to determining prognosis in amyotrophic lateral sclerosis (ALS).  Longitudinal changes in forced vital capacity-percent of predicted (FVC%) and motor unit number estimate (MUNE) may identify patient groups with more rapid disease progression. Objective: We attempted to define cutoff values for 3-month changes in FVC% and MUNE that identify ALS patients with rapidly progressive disease defined as survival of 30 months or less from symptom onset. Design: Cohort study. Subjects: We report data from 26 ALS patients, 10 patients reported previously and 16 patients not reported previously, except for the reproducibility of their MUNE data. Results: Of the 26 patients, 7 had rapid progression.  Either a 40% decrease in statistical MUNE or a 20% decrease in FVC% over 3 months identified 6 of 7 rapid progressors (Sensitivity=86% 95% confidence interval [CI] 42.1% - 99.6%).  Of the 19 patients without rapid progression, 18 met neither the FVC or MUNE criterion (Specificity = 94.7% CI 95% 74.0% - 99.9%).  In a proportional hazards model, 3 month change in both FVC and MUNE were significantly predictive of decreased survival. Conclusion: We suggest the use of a three-month change in MUNE or FVC% as a secondary enrollment criterion in therapeutic trials or to identify a subgroup of rapid progressors that may respond differently to treatments

    Pandemic Prompted Pivoting to Virtual Multidisciplinary Care

    Get PDF
    The MDA/ALS Clinic at the University of California, San Francisco (UCSF) have recently transitioned our in-person multidisciplinary clinics to a successful, virtual patient experience. Here, we outline our new clinic model, presenting detailed information about our clinics’ virtual workflow and our experiences with this transition. In this way, we hope to demonstrate the feasibility of a large-scale virtual multidisciplinary clinic and assist other clinics (both local and academic) as they transition their care of patients virtually within the COVID-19 environment

    Deciphering Amyotrophic Lateral Sclerosis: What Phenotype, Neuropathology and Genetics Are Telling Us about Pathogenesis

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is characterized phenotypically by progressive weakness and neuropathologically by loss of motor neurons. Phenotypically, there is marked heterogeneity. Typical ALS has mixed upper motor neuron (UMN) and lower motor neuron (LMN) involvement. Primary lateral sclerosis has predominant UMN involvement. Progressive muscular atrophy has predominant LMN involvement. Bulbar and limb ALS have predominant regional involvement. Frontotemporal dementia has significant cognitive and behavioral involvement. These phenotypes can be so distinctive that they would seem to have differing biology. But they cannot be distinguished, at least neuropathologically or genetically. In sporadic ALS (SALS), they all are characterized by ubiquitinated cytoplasmic inclusions of TDP-43. In familial ALS (FALS), where phenotypes are indistinguishable from SALS and similarly heterogeneous, each mutated gene has its own genetic and molecular signature. Putting this together, since the same phenotypes can have multiple causes including different gene mutations, there must be multiple molecular mechanisms causing ALS and ALS is a syndrome. But since multiple phenotypes can be caused by one single gene mutation, a single molecular mechanism can cause heterogeneity. What the mechanisms are remain unknown, but active propagation of the pathology neuroanatomically seems to be a principle component. Leading candidate mechanisms include RNA processing, cell-cell interactions between neurons and non-neuronal neighbors, focal seeding from a misfolded protein that has prion-like propagation, and fatal errors introduced during neurodevelopment of the motor system. If fundamental mechanisms can be identified and understood, ALS therapy could rationally target progression and stop disease—a goal that seems increasingly achievable.Stem Cell and Regenerative Biolog

    Longitudinal Screening Detects Cognitive Stability and Behavioral Deterioration in ALS Patients

    Get PDF
    Objective. To evaluate longitudinal cognitive/behavioral change over 12 months in participants enrolled in the ALS Multicenter Cohort Study of Oxidative Stress (ALS COSMOS). Methods. We analyzed data from 294 ALS participants, 134 of whom were studied serially. Change over time was evaluated controlling for age, sex, symptom duration, education, race, and ethnicity. Using multiple regression, we evaluated associations among decline in ALS Functional Rating Scale-Revised (ALSFRS-R) scores, forced vital capacity (FVC), and cognitive/behavioral changes. Change in cognitive/behavioral subgroups was assessed using one-way analyses of covariance. Results. Participants with follow-up data had fewer baseline behavior problems compared to patients without follow-up data. We found significant worsening of behavior (ALS Cognitive Behavioral Screen (ALS CBS) behavioral scale, p \u3c 0.001; Frontal Behavioral Inventory-ALS (FBI-ALS) disinhibition subscale, p = 0.044). Item analysis suggested change in frustration tolerance, insight, mental rigidity, and interests (p \u3c 0.05). Changes in ALSFRS-R correlated with the ALS CBS. Worsening disinhibition (FBI-ALS) did not correlate with ALSFRS-R, FVC, or disease duration. Conclusion. We did not detect cognitive change. Behavioral change was detected, and increased disinhibition was found among patients with abnormal baseline behavioral scores. Disinhibition changes did not correlate with disease duration or progression. Baseline behavioral problems were associated with advanced, rapidly progressive disease and study attrition

    Longitudinal Screening Detects Cognitive Stability and Behavioral Deterioration in ALS Patients.

    Get PDF
    ObjectiveTo evaluate longitudinal cognitive/behavioral change over 12 months in participants enrolled in the ALS Multicenter Cohort Study of Oxidative Stress (ALS COSMOS).MethodsWe analyzed data from 294 ALS participants, 134 of whom were studied serially. Change over time was evaluated controlling for age, sex, symptom duration, education, race, and ethnicity. Using multiple regression, we evaluated associations among decline in ALS Functional Rating Scale-Revised (ALSFRS-R) scores, forced vital capacity (FVC), and cognitive/behavioral changes. Change in cognitive/behavioral subgroups was assessed using one-way analyses of covariance.ResultsParticipants with follow-up data had fewer baseline behavior problems compared to patients without follow-up data. We found significant worsening of behavior (ALS Cognitive Behavioral Screen (ALS CBS) behavioral scale, p < 0.001; Frontal Behavioral Inventory-ALS (FBI-ALS) disinhibition subscale, p = 0.044). Item analysis suggested change in frustration tolerance, insight, mental rigidity, and interests (p < 0.05). Changes in ALSFRS-R correlated with the ALS CBS. Worsening disinhibition (FBI-ALS) did not correlate with ALSFRS-R, FVC, or disease duration.ConclusionWe did not detect cognitive change. Behavioral change was detected, and increased disinhibition was found among patients with abnormal baseline behavioral scores. Disinhibition changes did not correlate with disease duration or progression. Baseline behavioral problems were associated with advanced, rapidly progressive disease and study attrition

    Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons. A cross-ancestry genome-wide association meta-analysis of amyotrophic lateral sclerosis (ALS) including 29,612 patients with ALS and 122,656 controls identifies 15 risk loci with distinct genetic architectures and neuron-specific biology
    corecore