88 research outputs found

    A humanized mouse model for sequestration of Plasmodium falciparum sexual stages and in vivo evaluation of gametocytidal drugs

    Get PDF
    The development of new drugs to disrupt malaria transmission requires the establishment of an in vivo model to address the biology of Plasmodium falciparum sexual stages (gametocytes). Herein we show that chemically immune-modulated NSG mice grafted with human erythrocytes support complete sexual development of P. falciparum parasites and generate high gametocytemia. Immunohistochemistry and RT-qPCR analyses indicate an enrichment of immature gametocytes in the bone marrow and the spleen, suggesting a sequestration mechanism reminiscent to that observed in humans. Upon primaquine treatment, elimination of gametocytes from peripheral blood and from sequestration sites was observed, providing a proof of concept that these mice can be used for testing drugs. Therefore, this model allows the investigation of P. falciparum sexual commitment, gametocyte interactions with the bone marrow and spleen and provides the missing link between current in vitro assays and Phase I trials in humans for testing new malaria gametocytidal drugs

    cAMP-Signalling Regulates Gametocyte-Infected Erythrocyte Deformability Required for Malaria Parasite Transmission.

    Get PDF
    Blocking Plasmodium falciparum transmission to mosquitoes has been designated a strategic objective in the global agenda of malaria elimination. Transmission is ensured by gametocyte-infected erythrocytes (GIE) that sequester in the bone marrow and at maturation are released into peripheral blood from where they are taken up during a mosquito blood meal. Release into the blood circulation is accompanied by an increase in GIE deformability that allows them to pass through the spleen. Here, we used a microsphere matrix to mimic splenic filtration and investigated the role of cAMP-signalling in regulating GIE deformability. We demonstrated that mature GIE deformability is dependent on reduced cAMP-signalling and on increased phosphodiesterase expression in stage V gametocytes, and that parasite cAMP-dependent kinase activity contributes to the stiffness of immature gametocytes. Importantly, pharmacological agents that raise cAMP levels in transmissible stage V gametocytes render them less deformable and hence less likely to circulate through the spleen. Therefore, phosphodiesterase inhibitors that raise cAMP levels in P. falciparum infected erythrocytes, such as sildenafil, represent new candidate drugs to block transmission of malaria parasites

    Hypervariability within the Rifin, Stevor and Pfmc-2TM superfamilies in Plasmodium falciparum

    Get PDF
    The human malaria parasite, Plasmodium falciparum, possesses a broad repertoire of proteins that are proposed to be trafficked to the erythrocyte cytoplasm or surface, based upon the presence within these proteins of a Pexel/VTS erythrocyte-trafficking motif. This catalog includes large families of predicted 2 transmembrane (2TM) proteins, including the Rifin, Stevor and Pfmc-2TM superfamilies, of which each possesses a region of extensive sequence diversity across paralogs and between isolates that is confined to a proposed surface-exposed loop on the infected erythrocyte. Here we express epitope-tagged versions of the 2TM proteins in transgenic NF54 parasites and present evidence that the Stevor and Pfmc-2TM families are exported to the erythrocyte membrane, thus supporting the hypothesis that host immune pressure drives antigenic diversity within the loop. An examination of multiple P.falciparum isolates demonstrates that the hypervariable loop within Stevor and Pfmc-2TM proteins possesses sequence diversity across isolate boundaries. The Pfmc-2TM genes are encoded within large amplified loci that share profound nucleotide identity, which in turn highlight the divergences observed within the hypervariable loop. The majority of Pexel/VTS proteins are organized together within sub-telomeric genome neighborhoods, and a mechanism must therefore exist to differentially generate sequence diversity within select genes, as well as within highly defined regions within these genes

    Increased circulation time of Plasmodium falciparum underlies persistent asymptomatic infection in the dry season

    Get PDF
    The dry season is a major challenge for Plasmodium falciparum parasites in many malaria endemic regions, where water availability limits mosquito vectors to only part of the year. How P. falciparum bridges two transmission seasons months apart, without being cleared by the human host or compromising host survival, is poorly understood. Here we show that low levels of P. falciparum parasites persist in the blood of asymptomatic Malian individuals during the 5- to 6-month dry season, rarely causing symptoms and minimally affecting the host immune response. Parasites isolated during the dry season are transcriptionally distinct from those of individuals with febrile malaria in the transmission season, coinciding with longer circulation within each replicative cycle of parasitized erythrocytes without adhering to the vascular endothelium. Low parasite levels during the dry season are not due to impaired replication but rather to increased splenic clearance of longer-circulating infected erythrocytes, which likely maintain parasitemias below clinical and immunological radar. We propose that P. falciparum virulence in areas of seasonal malaria transmission is regulated so that the parasite decreases its endothelial binding capacity, allowing increased splenic clearance and enabling several months of subclinical parasite persistence

    Les carboxypeptidases B d'anophèles Gambiae impliquées dans le développement de plasmodium falciparum

    No full text
    PARIS-BIUSJ-Thèses (751052125) / SudocPARIS-BIUSJ-Physique recherche (751052113) / SudocSudocFranceF

    Erythroid cells and malaria parasites: it's a match!

    No full text
    International audienceThis review outlines recent discoveries on the infection of erythroid cells by Plasmodium parasites, focusing on the molecular interactions governing the tropism of parasites for their host cell and the implications of this tropism for parasite biology and erythroid cell maturation. Recent findings Although most studies about the interactions of Plasmodium parasites and their host cell focused on the deadliest human malaria parasite, Plasmodium falciparum, and the erythrocyte, there is increasing evidence that several Plasmodium species, including P. falciparum, also develop within erythroid precursors. These interactions likely modify the remodeling of the host cell by the parasite and affect the maturation of erythroblast and reticulocytes. Summary A better understanding of the remodeling of immature erythroid cells by Plasmodium parasites will have important implications for the development of antimalarial drugs or vaccines. In addition, deciphering how Plasmodium parasites interfere with erythropoiesis will provide new insights on how these parasites contribute to anemia in malaria patients

    Le Viagra

    No full text

    Host Cell Remodeling by Plasmodium falciparum Sexual Stages

    No full text
    International audienc

    Erythropoiesis and Malaria, a Multifaceted Interplay

    No full text
    International audienceOne of the major pathophysiologies of malaria is the development of anemia. Although hemolysis and splenic clearance are well described as causes of malarial anemia, abnormal erythropoiesis has been observed in malaria patients and may contribute significantly to anemia. The interaction between inadequate erythropoiesis and Plasmodium parasite infection, which partly occurs in the bone marrow, has been poorly investigated to date. However, recent findings may provide new insights. This review outlines clinical and experimental studies describing different aspects of ineffective erythropoiesis and dyserythropoiesis observed in malaria patients and in animal or in vitro models. We also highlight the various human and parasite factors leading to erythropoiesis disorders and discuss the impact that Plasmodium parasites may have on the suppression of erythropoiesis
    • …
    corecore