74 research outputs found

    Local seismicity around the Chain Transform Fault at the Mid-Atlantic Ridge from OBS observations

    Get PDF
    Summary Seismicity along transform faults provides important constraints for our understanding of the factors that control earthquake ruptures. Oceanic transform faults are particularly informative due to their relatively simple structure in comparison to their continental counterparts. The seismicity of several fast-moving transform faults has been investigated by local networks, but as of today there been few studies of transform faults in slow spreading ridges. Here we present the first local seismicity catalogue based on event data recorded by a temporary broadband network of 39 ocean bottom seismometers located around the slow-moving Chain Transform Fault (CTF) along the Mid-Atlantic Ridge (MAR) from March 2016 to March 2017. We locate 972 events in the area by simultaneously inverting for a 1-D velocity model informed by the event P- and S-arrival times. We refine the depths and focal mechanisms of the larger events using deviatoric moment tensor inversion. Most of the earthquakes are located along the CTF (700) and Romanche transform fault (94) and the MAR (155); a smaller number (23) can be observed on the continuing fracture zones or in intraplate locations. The ridge events are characterised by normal faulting and most of the transform events are characterised by strike slip faulting, but with several reverse mechanisms that are likely related to transpressional stresses in the region. CTF events range in magnitude from 1.1 to 5.6 with a magnitude of completeness around 2.3. Along the CTF we calculate a b-value of 0.81 ± 0.09. The event depths are mostly shallower than 15 km below sea level (523), but a small number of high-quality earthquakes (16) are located deeper, with some (8) located deeper than the brittle-ductile transition as predicted by the 600˚C-isotherm from a simple thermal model. The deeper events could be explained by the control of seawater infiltration on the brittle failure limit

    "The Book of Negroes’ illustrated edition: circulating African-Canadian history through the Middlebrow"

    Get PDF
    This article examines the 2009 deluxe illustrated edition of Lawrence Hill’s Commonwealth Writers’ Prize– and Canada Reads–winning novel The Book of Negroes, originally published in 2007. It relates the story of Aminata, a West African girl kidnapped and sold into slavery, and her experiences on an indigo plantation in the American south, followed by further displacements to Charleston, Nova Scotia, Sierra Leone, and London. In New York, as the Revolutionary War comes to a close, Aminata becomes the scribe for the Book of Negroes, documenting the Black Loyalists, as well as the slaves and indentured servants of white Loyalists, granted passage by the British to Canada. Hill has commented that the Book of Negroes is an important document about which Canadians are largely ignorant. This desire to circulate knowledge about African-Canadian history through the novel is particularly manifest in the illustrated edition of 2009, where a photograph of the Book of Negroes features prominently, along with countless other images and captions which supplement and interrupt Hill’s narrative. This article considers the significance and implications of this “keepsake” or “souvenir” edition, particularly its circulation of knowledge about African-Canadian history through visual pleasure

    Imaging the seismic velocity structure of the crust and upper mantle in the northern East African Rift using Rayleigh wave tomography

    Get PDF
    Understanding the dynamics and evolution of continental rifting is broadly important for our understanding of plate tectonics. The northern East African Rift offers an excellent opportunity to study these processes at an active rift that was initiated by a large magmatic event. Multiple seismic models have been produced to understand the evolution of magmatism which image punctuated slow velocity zones in the asthenosphere. However, the depth extent of the slow velocity bodies has been less well constrained leading to much debate regarding the primary controls on melt generation. Variations between methods, resolution, and scale of the seismic models make direct quantitative comparisons challenging. The lack of instrumentation off-rift further limits our understanding of the spatial extent of tectonic and magmatic processes, which is crucial to understanding magmatic continental rifting. In this paper, we jointly invert Rayleigh wave dispersion curves from ambient noise and teleseisms to obtain absolute shear velocity maps at 10–150 km depth. This includes data from a new seismic network located on the Ethiopian Plateau and enhanced resolution at Moho and upper mantle depths from the joint inversion. At crustal depths, velocities are slowest beneath the Main Ethiopian Rift and the off-rift Ethiopian Plateau (0.1 km/s faster than surroundings), in agreement with previous estimates of lithospheric thickness from receiver functions. The fast lid is not observed within the Main Ethiopian Rift or central Afar which instead are underlain by asthenospheric slow velocity anomalies (<4.05 ±0.04 km/s at 60–120 km depth). This suggests melt is infiltrating the lithosphere within the rift. Furthermore, punctuated asthenospheric slow velocity anomalies (∌110×80 km wide) exist in areas that have not undergone significant crustal and plate thinning, potentially indicating melt infiltration may start prior to significant plate deformation. Finally, the punctuated asthenospheric slow velocity zones are not located directly beneath melt-rich crustal regions including those off-rift, suggesting melt migration processes are dynamic and/or may occur laterally

    Upper mantle temperature and the onset of extension and break-up in Afar, Africa

    Get PDF
    It is debated to what extent mantle plumes play a role in continental rifting and eventual break-up. Afar lies at the northern end of the largest and most active present-day continental rift, where the East African Rift forms a triple junction with the Red Sea and Gulf of Aden rifts. It has a history of plume activity yet recent studies have reached conflicting conclusions on whether a plume still contributes to current Afar tectonics. A geochemical study concluded that Afar is a mature hot rift with 80 km thick lithosphere, while seismic data have been interpreted to reflect the structure of a young, oceanic rift basin above mantle of normal temperature. We develop a self-consistent forward model of mantle flow that incorporates melt generation and retention to test whether predictions of melt chemistry, melt volume and lithosphere–asthenosphere seismic structure can be reconciled with observations. The rare- earth element composition of mafic samples at the Erta Ale, Dabbahu and Asal magmatic segments can be used as both a thermometer and chronometer of the rifting process. Low seismic velocities require a lithosphere thinned to 50 km or less. A strong positive impedance contrast at 50 to 70 km below the rift seems linked to the melt zone, but is not reproduced by isotropic seismic velocity alone. Combined, the simplest interpretation is that mantle temperature below Afar is still elevated at 1450◩C, rifting started around 22–23 Ma, and the lithosphere has thinned from 100 to 50 km to allow significant decompressional melting

    Socioecological stressor areas and black-white blood pressure: Detroit

    Full text link
    1. 1. Blood pressure does appear to vary with `socioecological niches' or combinations of sex, race and residence, which reflect social class position as well as degree of social stressor conditions. Black High Stress males had higher adjusted levels than Black Low Stress males, while White High Stress females had higher adjusted pressures than White Low Stress females. Black High Stress females had significantly higher observed levels than Black Low Stress females.2. 2. Black High Stress males had a significantly higher per cent of Borderline and Hypertensive blood pressure than other male race-area groups; White Low Stress females had the lowest of all eight sex-race-stress area groups.3. 3. For Black males, the younger, overweight High Stress residents had significantly higher Borderline and Hypertensive levels than did a similar Black Low Stress subgroup. Further, for both groups, being raised in Detroit and not migrating from elsewhere was related to higher readings. Tests for age-stress area interaction, however, were not significant.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/33823/1/0000080.pd

    Imaging lithospheric discontinuities beneath the Northern East African Rift using S -to-P receiver functions

    Get PDF
    Imaging the lithosphere is key to understand mechanisms of extension as rifting progresses. Continental rifting results in a combination of mechanical stretching and thinning of the lithosphere, decompression upwelling, heating, sometimes partial melting of the asthenosphere, and potentially partial melting of the mantle lithosphere. The northern East African Rift system is an ideal locale to study these processes as it exposes the transition from tectonically active continental rifting to incipient seafloor spreading. Here we use S‐to‐P receiver functions to image the lithospheric structure beneath the northernmost East African Rift system where it forms a triple junction between the Main Ethiopian rift, the Red Sea rift, and the Gulf of Aden rift. We image the Moho at 31 ± 6 km beneath the Ethiopian plateau. The crust is 28 ± 3 km thick beneath the Main Ethiopian rift and thins to 23 ± 2 km in northern Afar. We identify a negative phase, a velocity decrease with depth, at 67 ± 3 km depth beneath the Ethiopian plateau, likely associated with the lithosphere‐asthenosphere boundary (LAB), and a lack of a LAB phase beneath the rift. Using observations and waveform modeling, we show that the LAB phase beneath the plateau is likely defined by a small amount of partial melt. The lack of a LAB phase beneath the rift suggests melt percolation through the base of the lithosphere beneath the northernmost East African Rift system

    Data from: Ecological opportunity and sexual selection together predict adaptive radiation

    No full text
    A fundamental challenge to our understanding of biodiversity is to explain why some groups of species undergo adaptive radiations, diversifying extensively into many and varied species, while others do not. Both extrinsic environmental factors (e.g. resource availability, climate) and intrinsic lineage-specific traits (e.g. behavioural or morphological traits, genetic architecture) influence diversification, but few studies have addressed how such factors interact. Radiations of cichlid fish in the African great lakes provide some of the most dramatic cases of species diversification. However, most cichlid lineages in African lakes have not undergone adaptive radiations. To investigate why adaptive radiation occurs and does not, we compiled data on cichlid colonization and diversification in 46 African lakes, along with lake environmental features and information about the traits of colonizing cichlid lineages. We find that extrinsic environmental factors related to ecological opportunity and intrinsic lineage-specific traits related to sexual selection both strongly influence whether cichlids radiate. Cichlids are more likely to radiate in deep lakes, in regions with more incident solar radiation, and in lakes where there has been more time for diversification. Weak or negative associations between diversification and lake surface area indicate that cichlid speciation is not constrained by area, in contrast to diversification in many terrestrial taxa. Among the suite of intrinsic traits that we investigated, sexual dichromatism, a surrogate for the intensity of sexual selection, is consistently positively associated with diversification. Thus, for cichlids, it is the coincidence between ecological opportunity and sexual selection that best predicts whether adaptive radiation will occur. These findings suggest that adaptive radiation is predictable – but only when both species traits and environmental factors are jointly considered

    Passive Imaging of the Lithosphere-Asthenosphere Boundary

    No full text
    The science team will systematically image the entire length of an oceanic plate, from its birth at the Mid Atlantic Ridge to its oldest formation on the African margin. This is a large-scale focused effort with multiple scales of resolution and sensitivity, from a metre to kilometre scale using seismic and electromagnetic methods. This scale, focus, and interdisciplinary approach will finally determine the processes and properties that make a plate strong and define it. The project will be accomplished through a large, focused international collaboration that involves EU partners (3.5 M euro) and industry (6.4M euro), both already funded.</span
    • 

    corecore