23 research outputs found

    Brain Peroxisomes

    No full text
    Peroxisomes are essential organelles in higher eukaryotes as they play a major role in numerous metabolic pathways and redox homeostasis. Some peroxisomal abnormalities, which are often not compatible with life or normal development, were identified in severe demyelinating and neurodegenerative brain diseases. The metabolic roles of peroxisomes, especially in the brain, are described and human brain peroxisomal disorders resulting from a peroxisome biogenesis or a single peroxisomal enzyme defect are listed. The brain abnormalities encountered in these disorders (demyelination, oxidative stress, inflammation, cell death, neuronal migration, differentiation) are described and their pathogenesis are discussed. Finally, the contribution of peroxisomal dysfunctions to the alterations of brain functions during aging and to the development of Alzheimer's disease is considered

    Phenylbutyrate up-regulates the adrenoleukodystrophy-related gene as a nonclassical peroxisome proliferator

    Get PDF
    X-linked adrenoleukodystrophy (X-ALD) is a demyelinating disease due to mutations in the ABCD1 (ALD) gene, encoding a peroxisomal ATP-binding cassette transporter (ALDP). Overexpression of adrenoleukodystrophy-related protein, an ALDP homologue encoded by the ABCD2 (adrenoleukodystrophy-related) gene, can compensate for ALDP deficiency. 4-Phenylbutyrate (PBA) has been shown to induce both ABCD2 expression and peroxisome proliferation in human fibroblasts. We show that peroxisome proliferation with unusual shapes and clusters occurred in liver of PBA-treated rodents in a PPARα-independent way. PBA activated Abcd2 in cultured glial cells, making PBA a candidate drug for therapy of X-ALD. The Abcd2 induction observed was partially PPARα independent in hepatocytes and totally independent in fibroblasts. We demonstrate that a GC box and a CCAAT box of the Abcd2 promoter are the key elements of the PBA-dependent Abcd2 induction, histone deacetylase (HDAC)1 being recruited by the GC box. Thus, PBA is a nonclassical peroxisome proliferator inducing pleiotropic effects, including effects at the peroxisomal level mainly through HDAC inhibition

    Peroxisomal defects in microglial cells induce a disease-associated microglial signature

    Get PDF
    Microglial cells ensure essential roles in brain homeostasis. In pathological condition, microglia adopt a common signature, called disease-associated microglial (DAM) signature, characterized by the loss of homeostatic genes and the induction of disease-associated genes. In X-linked adrenoleukodystrophy (X-ALD), the most common peroxisomal disease, microglial defect has been shown to precede myelin degradation and may actively contribute to the neurodegenerative process. We previously established BV-2 microglial cell models bearing mutations in peroxisomal genes that recapitulate some of the hallmarks of the peroxisomal β-oxidation defects such as very long-chain fatty acid (VLCFA) accumulation. In these cell lines, we used RNA-sequencing and identified large-scale reprogramming for genes involved in lipid metabolism, immune response, cell signaling, lysosome and autophagy, as well as a DAM-like signature. We highlighted cholesterol accumulation in plasma membranes and observed autophagy patterns in the cell mutants. We confirmed the upregulation or downregulation at the protein level for a few selected genes that mostly corroborated our observations and clearly demonstrated increased expression and secretion of DAM proteins in the BV-2 mutant cells. In conclusion, the peroxisomal defects in microglial cells not only impact on VLCFA metabolism but also force microglial cells to adopt a pathological phenotype likely representing a key contributor to the pathogenesis of peroxisomal disorders

    Immune response of BV-2 microglial cells is impacted by peroxisomal beta-oxidation

    Get PDF
    Microglia are crucial for brain homeostasis, and dysfunction of these cells is a key driver in most neurodegenerative diseases, including peroxisomal leukodystrophies. In X-linked adrenoleukodystrophy (X-ALD), a neuroinflammatory disorder, very long-chain fatty acid (VLCFA) accumulation due to impaired degradation within peroxisomes results in microglial defects, but the underlying mechanisms remain unclear. Using CRISPR/Cas9 gene editing of key genes in peroxisomal VLCFA breakdown (Abcd1, Abcd2, and Acox1), we recently established easily accessible microglial BV-2 cell models to study the impact of dysfunctional peroxisomal β-oxidation and revealed a disease-associated microglial-like signature in these cell lines. Transcriptomic analysis suggested consequences on the immune response. To clarify how impaired lipid degradation impacts the immune function of microglia, we here used RNA-sequencing and functional assays related to the immune response to compare wild-type and mutant BV-2 cell lines under basal conditions and upon pro-inflammatory lipopolysaccharide (LPS) activation. A majority of genes encoding proinflammatory cytokines, as well as genes involved in phagocytosis, antigen presentation, and co-stimulation of T lymphocytes, were found differentially overexpressed. The transcriptomic alterations were reflected by altered phagocytic capacity, inflammasome activation, increased release of inflammatory cytokines, including TNF, and upregulated response of T lymphocytes primed by mutant BV-2 cells presenting peptides. Together, the present study shows that peroxisomal β-oxidation defects resulting in lipid alterations, including VLCFA accumulation, directly reprogram the main cellular functions of microglia. The elucidation of this link between lipid metabolism and the immune response of microglia will help to better understand the pathogenesis of peroxisomal leukodystrophies

    Le gène Abcd2, une cible thérapeutique pour l Adrénoleucodystrophie liée à l X (régulation par les fibrates, le 4-phénylbutyrate et l hormone thyroïdienne T3)

    No full text
    L X-ALD est une maladie génétique neurodégénérative caractérisée par une accumulation d acides gras à très longue chaîne. Le gène ABCD1, dont la mutation est responsable de la maladie, code pour ALDP, un hémi-transporteur ABC de la membrane peroxysomale. ALDRP, codé par le gène ABCD2, est son plus proche homologue et présente une redondance fonctionnelle partielle avec ALDP. L induction de l expression du gène ABCD2 par un traitement pharmacologique est donc envisagée pour compenser la déficience d ALDP. Nous avons montré chez les rongeurs, que les fibrates, le 4-PBA et la T3 induisent l expression d Abcd2 dans le foie mais pas dans le cerveau (sauf in vitro dans des cellules gliales avec le 4-PBA et la T3). Les mécanismes moléculaires impliqués dans cette régulation ont été précisés : les fibrates agissent via PPAR le 4-PBA par une inhibition d activité HDAC et la T3 via TR qui interagit avec un motif DR-4 du promoteur d Abcd2.X-ALD is a genetic neurodegenerative disease characterized by an accumulation of very-long-chain fatty acids. The ABCD1 gene, which is responsible for the disease, encodes for a peroxisomal ABC half-transporter. ALDRP, encoded by the ABCD2 gene, is the closest homolog of ALDP and is partially functionnaly redundant with ALDP. So, the induction of the Abcd2 expression by a pharmacological treatment is considered in order to compensate for the ALDP deficiency. We have shown in rodents that fibrates, 4-PBA and T3 can induce expression of Abcd2 in liver but not in brain (or in vitro in glial cells treated with 4-PBA or T3). The molecular mechanisms of these regulations have been studied : fibrates act via PPAR , 4-PBA by inhibition of HDAC and T3 via TR which interacts with a DR-4 motif in the Abcd2 promoter.DIJON-BU Sciences Economie (212312102) / SudocSudocFranceF

    Pesticides. Comment réduire les risques associés?

    No full text
    Pesticides. Comment réduire les risques associés?. Evaluation et réduction des risques liés à l'utilisation des pesticide

    Induction of the adrenoleukodystrophy-related gene (ABCD2) by thyromimetics

    Full text link
    X-linked adrenoleukodystrophy (X-ALD) is a peroxisomal disorder caused by mutations in the ABCD1 (ALD) gene. The ABCD2 gene, its closest homolog, has been shown to compensate for ABCD1 deficiency when overexpressed. We previously demonstrated that the ABCD2 promoter contains a functional thyroid hormone response element. Thyroid hormone (T3) through its receptor TRbeta can induce hepatic Abcd2 expression in rodents and transiently normalize the VLCFA level in fibroblasts of Abcd1 null mice. In a therapeutic perspective, the use of selective agonists of TRbeta should present the advantage to be devoid of side effects, at least concerning the cardiotoxicity associated to TRalpha activation. In this study, we compared the effects of T3 with those of two thyromimetics (GC-1 and CGS 23425) specific of TRbeta. Using a gene reporter assay, we demonstrated that the rat Abcd2 promoter responds to the thyromimetics in a dose-dependent way similar to what is observed with T3. We then investigated the effects of 2-, 4- and 10-day treatments on the expression of ABCD2 and its paralogs ABCD3 and ABCD4 in human cell lines by RT-qPCR. Both thyromimetics trigger up-regulation of ABCD2-4 genes in HepG2 cells and X-ALD fibroblasts. Interestingly, in X-ALD fibroblasts, while T3 is associated with a transient induction of ABCD2 and ABCD3, the treatments with thyromimetics allow the induction to be maintained until 10 days. Further in vivo experiments in Abcd1 null mice with these thyromimetics should confirm the therapeutic potentialities of these molecules

    Peroxisomal ABC Transporters: An Update

    No full text
    ATP-binding cassette (ABC) transporters constitute one of the largest superfamilies of conserved proteins from bacteria to mammals. In humans, three members of this family are expressed in the peroxisomal membrane and belong to the subfamily D: ABCD1 (ALDP), ABCD2 (ALDRP), and ABCD3 (PMP70). These half-transporters must dimerize to form a functional transporter, but they are thought to exist primarily as tetramers. They possess overlapping but specific substrate specificity, allowing the transport of various lipids into the peroxisomal matrix. The defects of ABCD1 and ABCD3 are responsible for two genetic disorders called X-linked adrenoleukodystrophy and congenital bile acid synthesis defect 5, respectively. In addition to their role in peroxisome metabolism, it has recently been proposed that peroxisomal ABC transporters participate in cell signaling and cell control, particularly in cancer. This review presents an overview of the knowledge on the structure, function, and mechanisms involving these proteins and their link to pathologies. We summarize the different in vitro and in vivo models existing across the species to study peroxisomal ABC transporters and the consequences of their defects. Finally, an overview of the known and possible interactome involving these proteins, which reveal putative and unexpected new functions, is shown and discussed

    Transporteurs ABC peroxysomaux et adrénoleucodystrophie liée au chromosome X

    No full text
    L’adrénoleucodystrophie liée au chromosome X (X-ALD) est une maladie neurodégénérative associée à des mutations dans le gène ABCD1 qui code pour un transporteur ABC peroxysomal. Mieux connue grâce aux efforts de la fondation ELA (association européenne contre les leucodystrophies) et aux récents succès de thérapie génique publiés dans le journal Science en 2009, cette maladie reste néanmoins mal comprise. Le rôle exact d’ABCD1 et de ses homologues, et le lien exact entre les défauts biochimiques et métaboliques peroxysomaux et les symptômes cliniques de la maladie restent à préciser. Cette revue fait le point de nos connaissances sur la sous-famille D des transporteurs ABC et sur l’X-ALD, la plus fréquente des maladies peroxysomales

    Predictive Structure and Topology of Peroxisomal ATP-Binding Cassette (ABC) Transporters

    No full text
    The peroxisomal ATP-binding Cassette (ABC) transporters, which are called ABCD1, ABCD2 and ABCD3, are transmembrane proteins involved in the transport of various lipids that allow their degradation inside the organelle. Defective ABCD1 leads to the accumulation of very long-chain fatty acids and is associated with a complex and severe neurodegenerative disorder called X-linked adrenoleukodystrophy (X-ALD). Although the nucleotide-binding domain is highly conserved and characterized within the ABC transporters family, solid data are missing for the transmembrane domain (TMD) of ABCD proteins. The lack of a clear consensus on the secondary and tertiary structure of the TMDs weakens any structure-function hypothesis based on the very diverse ABCD1 mutations found in X-ALD patients. Therefore, we first reinvestigated thoroughly the structure-function data available and performed refined alignments of ABCD protein sequences. Based on the 2.85  Å resolution crystal structure of the mitochondrial ABC transporter ABCB10, here we propose a structural model of peroxisomal ABCD proteins that specifies the position of the transmembrane and coupling helices, and highlight functional motifs and putative important amino acid residues
    corecore