147 research outputs found

    Crowded chromatin is not sufficient for heterochromatin formation and not required for its maintenance

    No full text
    International audienceIn contrast to cytoplasmic organelles, which are usually separated from the rest of the cell by phospholipid membranes, nuclear compartments are readily accessible to diffusing proteins and must rely on different mechanisms to maintain their integrity. Specific interactions between scaffolding proteins are known to have important roles for the formation and maintenance of nuclear structures. General physical mechanisms such as molecular crowding, phase separation or colloidal behavior have also been suggested, but their physiological significance remains uncertain. For macromolecular crowding, a role in the maintenance of nucleoli and promyelocytic leukemia (PML) nuclear bodies has been shown. Here, we tested whether a modulation of the compaction state of chromatin, which directly influences the local crowding state, has an impact on the formation and maintenance of densely packed heterochromatin. By osmotic perturbations, we could modify the packing state of chromatin in a controlled manner and show that chromatin compaction, which is associated with increased crowding conditions, is not, per se, sufficient to initiate the formation of new bona fide heterochromatin structures nor is it necessary to maintain already established heterochromatin domains. In consequence, if an increase in crowding induced by chromatin compaction maybe an early step in heterochromatin formation, specific protein-protein interactions are nevertheless required to make heterochromatin long lasting and independent of the crowding state

    Stress reaction of kidney epithelial cells to inorganic solid-core nanoparticles

    Get PDF
    A route of accumulation and elimination of therapeutic engineered nanoparticles (NPs) may be the kidney. Therefore, the interactions of different solid-core inorganic NPs (titanium-, silica-, and iron oxide-based NPs) were studied in vitro with the MDCK and LLC-PK epithelial cells as representative cells of the renal epithelia. Following cell exposure to the NPs, observations include cytotoxicity for oleic acid-coated iron oxide NPs, the production of reactive oxygen species for titanium dioxide NPs, and cell depletion of thiols for uncoated iron oxide NPs, whereas for silica NPs an apparent rapid and short-lived increase of thiol levels in both cell lines was observed. Following cell exposure to metallic NPs, the expression of the tranferrin receptor/CD71 was decreased in both cells by iron oxide NPs, but only in MDCK cells by titanium dioxide NPs. The tight association, then subsequent release of NPs by MDCK and LLC-PK kidney epithelial cells, showed that following exposure to the NPs, only MDCK cells could release iron oxide NPs, whereas both cells released titanium dioxide NPs. No transfer of any solid-core NPs across the cell layers was observe

    Isolation and Characterization of Twelve Polymorphic Microsatellite Loci for the Cocoa Mirid Bug Sahlbergella Singularis

    Get PDF
    Mirids are the primary pests affecting cocoa production in Africa, but no genetic studies have been conducted on these insects. Here we report the isolation and characterization of 12 polymorphic microsatellite loci for Sahlbergella singularis. A microsatellite-enriched genomic DNA library was developed and screened to identify marker loci. Twelve polymorphic loci were identified by screening 28 individuals collected from one presumed population in cocoa plantations in Southern Cameroon. The number of alleles ranged from 5 to 25, whereas the observed and the expected heterozygosities ranged from 0.179 to 0.786 and from 0.671 to 0.946, respectively. Tests showed significant deviations from HW equilibrium for four loci, but no linkage disequilibrium was detected at any of the loci. No cross-species amplification was observed in two other mirid pests in Africa

    Genetic Evidence for a Link Between Glycolysis and DNA Replication

    Get PDF
    BACKGROUND: A challenging goal in biology is to understand how the principal cellular functions are integrated so that cells achieve viability and optimal fitness in a wide range of nutritional conditions. METHODOLOGY/PRINCIPAL FINDINGS: We report here a tight link between glycolysis and DNA synthesis. The link, discovered during an analysis of suppressors of thermosensitive replication mutants in bacterium Bacillus subtilis, is very strong as some metabolic alterations fully restore viability to replication mutants in which a lethal arrest of DNA synthesis otherwise occurs at a high, restrictive, temperature. Full restoration of viability by such alterations was limited to cells with mutations in three elongation factors (the lagging strand DnaE polymerase, the primase and the helicase) out of a large set of thermosensitive mutants affected in most of the replication proteins. Restoration of viability resulted, at least in part, from maintenance of replication protein activity at high temperature. Physiological studies suggested that this restoration depended on the activity of the three-carbon part of the glycolysis/gluconeogenesis pathway and occurred in both glycolytic and gluconeogenic regimens. Restoration took place abruptly over a narrow range of expression of genes in the three-carbon part of glycolysis. However, the absolute value of this range varied greatly with the allele in question. Finally, restoration of cell viability did not appear to be the result of a decrease in growth rate or an induction of major stress responses. CONCLUSIONS/SIGNIFICANCE: Our findings provide the first evidence for a genetic system that connects DNA chain elongation to glycolysis. Its role may be to modulate some aspect of DNA synthesis in response to the energy provided by the environment and the underlying mechanism is discussed. It is proposed that related systems are ubiquitous

    Rab27A and its effector MyRIP link secretory granules to F-actin and control their motion towards release sites

    Get PDF
    The GTPase Rab27A interacts with myosin-VIIa and myosin-Va via MyRIP or melanophilin and mediates melanosome binding to actin. Here we show that Rab27A and MyRIP are associated with secretory granules (SGs) in adrenal chromaffin cells and PC12 cells. Overexpression of Rab27A, GTPase-deficient Rab27A-Q78L, or MyRIP reduced secretory responses of PC12 cells. Amperometric recordings of single adrenal chromaffin cells revealed that Rab27A-Q78L and MyRIP reduced the sustained component of release. Moreover, these effects on secretion were partly suppressed by the actin-depolymerizing drug latrunculin but strengthened by jasplakinolide, which stabilizes the actin cortex. Finally, MyRIP and Rab27A-Q78L restricted the motion of SGs in the subplasmalemmal region of PC12 cells, as measured by evanescent-wave fluorescence microscopy. In contrast, the Rab27A-binding domain of MyRIP and a MyRIP construct that interacts with myosin-Va but not with actin increased the mobility of SGs. We propose that Rab27A and MyRIP link SGs to F-actin and control their motion toward release sites through the actin cortex

    Natalizumab treatment shows low cumulative probabilities of confirmed disability worsening to EDSS milestones in the long-term setting.

    Get PDF
    Abstract Background Though the Expanded Disability Status Scale (EDSS) is commonly used to assess disability level in relapsing-remitting multiple sclerosis (RRMS), the criteria defining disability progression are used for patients with a wide range of baseline levels of disability in relatively short-term trials. As a result, not all EDSS changes carry the same weight in terms of future disability, and treatment benefits such as decreased risk of reaching particular disability milestones may not be reliably captured. The objectives of this analysis are to assess the probability of confirmed disability worsening to specific EDSS milestones (i.e., EDSS scores ≥3.0, ≥4.0, or ≥6.0) at 288 weeks in the Tysabri Observational Program (TOP) and to examine the impact of relapses occurring during natalizumab therapy in TOP patients who had received natalizumab for ≥24 months. Methods TOP is an ongoing, open-label, observational, prospective study of patients with RRMS in clinical practice. Enrolled patients were naive to natalizumab at treatment initiation or had received ≤3 doses at the time of enrollment. Intravenous natalizumab (300 mg) infusions were given every 4 weeks, and the EDSS was assessed at baseline and every 24 weeks during treatment. Results Of the 4161 patients enrolled in TOP with follow-up of at least 24 months, 3253 patients with available baseline EDSS scores had continued natalizumab treatment and 908 had discontinued (5.4% due to a reported lack of efficacy and 16.4% for other reasons) at the 24-month time point. Those who discontinued due to lack of efficacy had higher baseline EDSS scores (median 4.5 vs. 3.5), higher on-treatment relapse rates (0.82 vs. 0.23), and higher cumulative probabilities of EDSS worsening (16% vs. 9%) at 24 months than those completing therapy. Among 24-month completers, after approximately 5.5 years of natalizumab treatment, the cumulative probabilities of confirmed EDSS worsening by 1.0 and 2.0 points were 18.5% and 7.9%, respectively (24-week confirmation), and 13.5% and 5.3%, respectively (48-week confirmation). The risks of 24- and 48-week confirmed EDSS worsening were significantly higher in patients with on-treatment relapses than in those without relapses. An analysis of time to specific EDSS milestones showed that the probabilities of 48-week confirmed transition from EDSS scores of 0.0–2.0 to ≥3.0, 2.0–3.0 to ≥4.0, and 4.0–5.0 to ≥6.0 at week 288 in TOP were 11.1%, 11.8%, and 9.5%, respectively, with lower probabilities observed among patients without on-treatment relapses (8.1%, 8.4%, and 5.7%, respectively). Conclusions In TOP patients with a median (range) baseline EDSS score of 3.5 (0.0–9.5) who completed 24 months of natalizumab treatment, the rate of 48-week confirmed disability worsening events was below 15%; after approximately 5.5 years of natalizumab treatment, 86.5% and 94.7% of patients did not have EDSS score increases of ≥1.0 or ≥2.0 points, respectively. The presence of relapses was associated with higher rates of overall disability worsening. These results were confirmed by assessing transition to EDSS milestones. Lower rates of overall 48-week confirmed EDSS worsening and of transitioning from EDSS score 4.0–5.0 to ≥6.0 in the absence of relapses suggest that relapses remain a significant driver of disability worsening and that on-treatment relapses in natalizumab-treated patients are of prognostic importance

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele

    Multiancestry analysis of the HLA locus in Alzheimer’s and Parkinson’s diseases uncovers a shared adaptive immune response mediated by HLA-DRB1*04 subtypes

    Get PDF
    Across multiancestry groups, we analyzed Human Leukocyte Antigen (HLA) associations in over 176,000 individuals with Parkinson’s disease (PD) and Alzheimer’s disease (AD) versus controls. We demonstrate that the two diseases share the same protective association at the HLA locus. HLA-specific fine-mapping showed that hierarchical protective effects of HLA-DRB1*04 subtypes best accounted for the association, strongest with HLA-DRB1*04:04 and HLA-DRB1*04:07, and intermediary with HLA-DRB1*04:01 and HLA-DRB1*04:03. The same signal was associated with decreased neurofibrillary tangles in postmortem brains and was associated with reduced tau levels in cerebrospinal fluid and to a lower extent with increased Aβ42. Protective HLA-DRB1*04 subtypes strongly bound the aggregation-prone tau PHF6 sequence, however only when acetylated at a lysine (K311), a common posttranslational modification central to tau aggregation. An HLA-DRB1*04-mediated adaptive immune response decreases PD and AD risks, potentially by acting against tau, offering the possibility of therapeutic avenues
    corecore