246 research outputs found

    Co-designing climate-smart farming systems with local stakeholders: A methodological framework for achieving large-scale change

    Get PDF
    The literature is increasing on how to prioritize climate-smart options with stakeholders but relatively few examples exist on how to co-design climate-smart farming systems with them, in particular with smallholder farmers. This article presents a methodological framework to co-design climate-smart farming systems with local stakeholders (farmers, scientists, NGOs) so that large-scale change can be achieved. This framework is based on the lessons learned during a research project conducted in Honduras and Colombia from 2015 to 2017. Seven phases are suggested to engage a process of co-conception of climate-smart farming systems that might enable implementation at scale: (1) “exploration of the initial situation,” which identifies local stakeholders potentially interested in being involved in the process, existing farming systems, and specific constraints to the implementation of climate-smart agriculture (CSA); (2) “co-definition of an innovation platform,” which defines the structure and the rules of functioning for a platform favoring the involvement of local stakeholders in the process; (3) “shared diagnosis,” which defines the main challenges to be solved by the innovation platform; (4) “identification and ex ante assessment of new farming systems,” which assess the potential performances of solutions prioritized by the members of the innovation platform under CSA pillars; (5) “experimentation,” which tests the prioritized solutions on-farm; (6) “assessment of the co-design process of climate-smart farming systems,” which validates the ability of the process to reach its initial objectives, particularly in terms of new farming systems but also in terms of capacity building; and (7) “definition of strategies for scaling up/out,” which addresses the scaling of the co-design process. For each phase, specific tools or methodologies are used: focus groups, social network analysis, theory of change, life-cycle assessment, and on-farm experiments. Each phase is illustrated with results obtained in Colombia or Honduras

    A new scoring system for the diagnosis of BRCA1/2 associated breast-ovarian cancer predisposition.

    Get PDF
    International audienceCriteria have been proposed for genetic testing of breast and ovarian cancer susceptibility genes BRCA1 and BRCA2. Using simulations, this study evaluates the efficiency (sensitivity, positive predictive value [PPV] and specificity) of the various criteria used in France. The efficiency of the criteria published in 1998, which are largely used, is not optimal. We show that some extensions of these criteria provide an increase in sensitivity with a low decrease in specificity and PPV. The study shows that scoring systems (Manchester, Eisinger) have similar efficiency that may be improved. In this aim, we propose a new scoring system that takes into account unaffected individuals and kinship coefficients between family members. This system increases sensitivity without affecting PPV and specificity. Finally, we propose a two-step procedure with a large screening by the physician for recommending genetic counselling, followed by a more stringent selection by the geneticist for prescribing genetic testing. This procedure would result in an increase of genetic counselling activity but would allow the identification of almost 80% of mutation carriers among affected individuals, with a mutation detection rate of 15% and a specificity of 88%

    1H-NMR metabolomics: Profiling method for a rapid and efficient screening of transgenic plants

    Get PDF
    Metabolomics-based approaches are methods of choice for studying changes in fruit composition induced by  environmental or genetic modulation of biochemical pathways in the fruit. Owing to enzyme redundancy and  high plasticity of the metabolic network, transgenic alteration of the activity of the enzymes from the central metabolism very often results in only slight modifications of the fruit composition. In order to avoid costly and  time-consuming plant analysis, we used a fast and sensitive 1H-NMR-based metabolomic profiling technique  allowing discovery of slight metabolite variations in a large number of samples. Here, we describe the  screening of transgenic tomato plants in which two genes from the central metabolism, phosphoenolpyruvate  carboxylase (EC.3.4.1.1) and malate synthase (EC 2.3.3.9) were silenced by antisens and RNAi strategy.  1H-NMR metabolomic profiles of methanol-d4 D2O buffer extracts of tomato fruit flesh were acquired and  subjected to unsupervised multivariate statistical analysis. 1H-NMR spectra were binned into variable-size  spectral domains, making it possible to get an overall analysis of a large number of resonances, even in the  case of uncontrolled variation of the chemical shift. Principal component analysis was used to separate groups  of samples and to relate known and unknown metabolites to transgenic events. The screening of 100 samples,  from extraction to data mining, took 36 h. Thus, this procedure allows the rapid selection of metabolic  phenotypes of interest among about 30 transgenic lines.Key words: Metabolome, GMO, tomato, fruit, 1H-NMR profiling, screening

    A bloodâ based nutritional risk index explains cognitive enhancement and decline in the multidomain Alzheimer prevention trial

    Full text link
    IntroductionMultinutrient approaches may produce more robust effects on brain health through interactive qualities. We hypothesized that a bloodâ based nutritional risk index (NRI) including three biomarkers of diet quality can explain cognitive trajectories in the multidomain Alzheimer prevention trial (MAPT) over 3â years.MethodsThe NRI included erythrocyte nâ 3 polyunsaturated fatty acids (nâ 3 PUFA 22:6nâ 3 and 20:5nâ 3), serum 25â hydroxyvitamin D, and plasma homocysteine. The NRI scores reflect the number of nutritional risk factors (0â 3). The primary outcome in MAPT was a cognitive composite Z score within each participant that was fit with linear mixedâ effects models.ResultsEighty percent had at lease one nutritional risk factor for cognitive decline (NRI â ¥1: 573 of 712). Participants presenting without nutritional risk factors (NRI=0) exhibited cognitive enhancement (β = 0.03 standard units [SU]/y), whereas each NRI point increase corresponded to an incremental acceleration in rates of cognitive decline (NRIâ 1: β = â 0.04 SU/y, P = .03; NRIâ 2: β = â 0.08 SU/y, P < .0001; and NRIâ 3: β = â 0.11 SU/y, P = .0008).DiscussionIdentifying and addressing these wellâ established nutritional risk factors may reduce ageâ related cognitive decline in older adults; an observation that warrants further study.Highlightsâ ¢Multiâ nutrient approaches may produce more robust effects through interactive propertiesâ ¢Nutritional risk index can objectively quantify nutritionâ related cognitive changesâ ¢Optimum nutritional status associated with cognitive enhancement over 3â yearsâ ¢Suboptimum nutritional status associated with cognitive decline over 3â yearsâ ¢Optimizing this nutritional risk index may promote cognitive health in older adultsPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/152935/1/trc2jtrci201911004.pd

    Co-designing Climate-Smart Farming Systems With Local Stakeholders: A Methodological Framework for Achieving Large-Scale Change

    Get PDF
    The literature is increasing on how to prioritize climate-smart options with stakeholders but relatively few examples exist on how to co-design climate-smart farming systems with them, in particular with smallholder farmers. This article presents a methodological framework to co-design climate-smart farming systems with local stakeholders (farmers, scientists, NGOs) so that large-scale change can be achieved. This framework is based on the lessons learned during a research project conducted in Honduras and Colombia from 2015 to 2017. Seven phases are suggested to engage a process of co-conception of climate-smart farming systems that might enable implementation at scale: (1) “exploration of the initial situation,” which identifies local stakeholders potentially interested in being involved in the process, existing farming systems, and specific constraints to the implementation of climate-smart agriculture (CSA); (2) “co-definition of an innovation platform,” which defines the structure and the rules of functioning for a platform favoring the involvement of local stakeholders in the process; (3) “shared diagnosis,” which defines the main challenges to be solved by the innovation platform; (4) “identification and ex ante assessment of new farming systems,” which assess the potential performances of solutions prioritized by the members of the innovation platform under CSA pillars; (5) “experimentation,” which tests the prioritized solutions on-farm; (6) “assessment of the co-design process of climate-smart farming systems,” which validates the ability of the process to reach its initial objectives, particularly in terms of new farming systems but also in terms of capacity building; and (7) “definition of strategies for scaling up/out,” which addresses the scaling of the co-design process. For each phase, specific tools or methodologies are used: focus groups, social network analysis, theory of change, life-cycle assessment, and on-farm experiments. Each phase is illustrated with results obtained in Colombia or Honduras

    Innovation platforms for Climate Smart Agriculture in Honduras

    Get PDF
    Innovation Platforms for the adoption of Climate Smart Agriculture for Family farmers (PIASAC) was a project aimed at creating local knowledge and capacities on climate change and finding options for adaption in a participatory way. The project took place in the municipality of Gracias, located in the dry corridor of Honduras. 38 farming families were involved in a 2-year research process facilitated by the Direction of agricultural science and technology (DICTA), with the methodological support of CIRAD under the coordination of CIAT. The project was funded by FONTAGRO

    Innovation platforms for Climate Smart Agriculture in Honduras

    Get PDF
    Innovation Platforms for the adoption of Climate Smart Agriculture for Family farmers (PIASAC) was a project aimed at creating local knowledge and capacities on climate change and finding options for adaption in a participatory way. The project took place in the municipality of Gracias, located in the dry corridor of Honduras. 38 farming families were involved in a 2-year research process facilitated by the Direction of agricultural science and technology (DICTA), with the methodological support of CIRAD under the coordination of CIAT. The project was funded by FONTAGRO

    Plataformas de innovación para la agricultura sostenible adaptada al clima en Honduras

    Get PDF
    Las Plataformas de Innovación para implementar una Agricultura Sostenible Adaptada al Clima (PIASAC) para los pequeños agricultores fue un proyecto que tenía como objetivo generar conocimientos y capacidades locales sobre cambio climático y construir opciones de adaptación de manera participativa. El proyecto se llevó a cabo en el municipio de Gracias, ubicado en el Corredor Seco de Honduras. Un total de 38 familias agricultoras participaron directamente en un proceso de investigación de 2 años, facilitado a través de la Dirección de Ciencia y Tecnología Agropecuaria (DICTA), con el apoyo metodológico del Centro Francés de Investigación Agrícola para el Desarrollo (CIRAD) bajo la coordinación del Centro Internacional de Agricultura Tropical (CIAT). El proyecto contó con la financiación del Fondo Regional de Tecnología Agropecuaria (FONTAGRO)

    Sphingomyelin synthase-related protein SMSr controls ceramide homeostasis in the ER

    Get PDF
    Ceramides are central intermediates of sphingolipid metabolism with critical functions in cell organization and survival. They are synthesized on the cytosolic surface of the endoplasmic reticulum (ER) and transported by ceramide transfer protein to the Golgi for conversion to sphingomyelin (SM) by SM synthase SMS1. In this study, we report the identification of an SMS1-related (SMSr) enzyme, which catalyses the synthesis of the SM analogue ceramide phosphoethanolamine (CPE) in the ER lumen. Strikingly, SMSr produces only trace amounts of CPE, i.e., 300-fold less than SMS1-derived SM. Nevertheless, blocking its catalytic activity causes a substantial rise in ER ceramide levels and a structural collapse of the early secretory pathway. We find that the latter phenotype is not caused by depletion of CPE but rather a consequence of ceramide accumulation in the ER. Our results establish SMSr as a key regulator of ceramide homeostasis that seems to operate as a sensor rather than a converter of ceramides in the ER

    Cancer risk management strategies and perceptions of unaffected women 5 years after predictive genetic testing for BRCA1/2 mutations

    Get PDF
    In a French national cohort of unaffected females carriers/non-carriers of a BRCA1/2 mutation, long-term preventive strategies and breast/ovarian cancer risk perceptions were followed up to 5 years after test result disclosure, using self-administered questionnaires. Response rate was 74%. Carriers (N=101) were younger (average age±SD=37±10) than non-carriers (N=145; 42±12). There were four management strategies that comprised 88% of the decisions made by the unaffected carriers: 50% opted for breast surveillance alone, based on either magnetic resonance imaging (MRI) and other imaging (31%) or mammography alone (19%); 38% opted for either risk reducing salpingo-oophorectomy (RRSO) and breast surveillance, based on MRI and other imaging (28%) or mammography alone (10%). The other three strategies were: risk reducing mastectomy (RRM) and RRSO (5%), RRM alone (2%) and neither RRM/RRSO nor surveillance (6%). The results obtained for various age groups are presented here. Non-carriers often opted for screening despite their low cancer risk. Result disclosure increased carriers' short-term high breast/ovarian cancer risk perceptions (P⩽0.02) and decreased non-carriers' short- and long-term perceptions (P<0.001). During follow-up, high breast cancer risk perceptions increased with time among those who had no RRM and decreased in the opposite case; high ovarian cancer risk perceptions increased further with time among those who had no RRSO and decreased in the opposite case; RRSO did not affect breast cancer risk perceptions. Informed decision-making involves letting women know whether opting for RRSO and breast MRI surveillance is as effective in terms of survival as RRM and RRSO
    corecore