27 research outputs found

    design of passive ring resonators to be used for sensing applications

    Get PDF
    In this paper we report on the effects of two optical beams counterpropagating in a passive ring resonator that is the building block of a lot of sensing applications. By using the transfer matrix method in combination with the coupled mode theory, the analytical expressions of the power transfer functions for drop and through port configurations are derived in both cases of single beam and double beams inside the ring. The implemented model has shown some improvements in the resonator performance, such as the increase of the transmission power and the reduction of the linewidth, when the interaction between the two beams is considered, with respect to the single beam ring resonator configuration

    Three-dimensional modelling of scattering loss in InGaAsP/InP and silica-on-silicon bent waveguides

    Get PDF
    A three-dimensional (3D) method for the estimation of scattering loss due to sidewalls roughness in bent optical waveguides is proposed and validated. The approach, based on Volume Current Method (VCM), has been pointed out to accurately calculate the scattering loss as dependent on curvature radius and wavelength. An exponential model has been employed to analytically describe the sidewalls roughness and a 3D mode solver based on mode-matching method has been used to calculate optical field distribution in the bent waveguide cross-section. Scattering loss suffered by two low index contrast waveguides has been investigated by the developed algorithm. For a buried InGaAsP/InP waveguide and a 6 μm x 6 μm Silica-on-Silicon guiding structure scattering loss dependence on bending radius, wavelength, roughness, correlation length and standard deviation has been investigated and discussed. Because of the different index contrast values, InGaAsP/InP waveguide exhibits a scattering loss which is quite six times larger than in Silica-on-Silicon. For both guiding structures, quasi-TM mode shows a larger scattering loss than quasi-TE one

    Quality factor and finesse optimization in buried InGaAsP/InP ring resonators

    Get PDF
    Quality factor and finesse of buried In1-xGaxAsyP1-y / InP ring resonators have been optimized in this paper by a very general modelling technique. Limiting effect of propagation loss within the ring has been investigated using a three-dimensional (3D) highly accurate complex mode solver based on mode matching method to analyze bending loss dependence on ring radius and wavelength. Coupling between straight input/output (I/O) bus waveguides and ring resonator has been studied by 3D Beam Propagation Method (BPM), deriving coupling loss and coupling coefficient for a large range of ring radius and bus waveguides-ring distance values (for both polarizations). Ring resonator has been modelled by the transfer-matrix approach, while finesse and quality factor dependence on radius has been estimated for two resonator architectures (including one or two I/O bus waveguides) and for quasi-TE and quasi-TM modes. Guiding structure has been optimized to enhance resonator performance. The modelling approach has been validated by comparing results obtained by our algorithm with experimental data reported in literature. Influence of rejection (at resonance wavelength) at through port on quality factor and finesse has been widely discussed. A quality factor larger than 8 x 105 has been predicted for the ring resonator employing only one I/O bus waveguide and having a radius of 400 μm. This resonator exhibits a rejection of -8 dB at through port

    Phononic and photonic band gap structures: modelling and applications

    Get PDF
    AbstractPhotonic crystals (PhCs) are artificial materials with a permittivity which is a periodic function of the position, with a period comparable to the wavelength of light. The most interesting characteristic of such materials is the presence of photonic band gaps (PBGs). PhCs have very interesting properties of light confinement and localization together with the strong reduction of the device size, orders of magnitude less than the conventional photonic devices, allowing a potential very high scale of integration. These structures possess unique characteristics enabling to operate as optical waveguides, high Q resonators, selective filters, lens or superprism. The ability to mould and guide light leads naturally to novel applications in several fields.Band gap formation in periodic structures also pertains to elastic wave propagation. Composite materials with elastic coefficients which are periodic functions of the position are named phononic crystals. They have properties similar to those of photonic crystals and corresponding applications too. By properly choosing the parameters one may obtain phononic crystals (PhnCs) with specific frequency gaps. An elastic wave, whose frequency lies within an absolute gap of a phononic crystal, will be completely reflected by it. This property allows realizing non-absorbing mirrors of elastic waves and vibration-free cavities which might be useful in high-precision mechanical systems operating in a given frequency range. Moreover, one can use elastic waves to study phenomena such as those associated with disorder, in more or less the same manner as with electromagnetic waves.The authors present in this paper an introductory survey of the basic concepts of these new technologies with particular emphasis on their main applications, together with a description of some modelling approaches

    Ultra-high Q/V hybrid cavity for strong light-matter interaction

    Get PDF
    The ability to confine light at the nanoscale continues to excite the research community, with the ratio between quality factor Q and volume V, i.e., the Q/V ratio, being the key figure of merit. In order to achieve strong light-matter interaction, however, it is important to confine a lot of energy in the resonant cavity mode. Here, we demonstrate a novel cavity design that combines a photonic crystal nanobeam cavity with a plasmonic bowtie antenna. The nanobeam cavity is optimised for a good match with the antenna and provides a Q of 1700 and a transmission of 90%. Combined with the bowtie, the hybrid photonic-plasmonic cavity achieves a Q of 800 and a transmission of 20%, both of which remarkable achievements for a hybrid cavity. The ultra-high Q/V of the hybrid cavity is of order of 106 (λ/n)−3, which is comparable to the state-of-the-art of photonic resonant cavities. Based on the high Q/V and the high transmission, we demonstrate the strong efficiency of the hybrid cavity as a nanotweezer for optical trapping. We show that a stable trapping condition can be achieved for a single 200 nm Au bead for a duration of several minutes (ttrap > 5 min) and with very low optical power (Pin = 190 μW)

    Low-loss passive waveguides in a generic InP foundry process via local diffusion of zinc

    Get PDF
    Generic InP foundry processes allow monolithic integration of active and passive elements into a common p-n doped layerstack. The passive loss can be greatly reduced by restricting the p-dopant to active regions. We report on a localized Zn-diffusion process based on MOVPE, which allows to reduce waveguide loss from 2 dB/cm to below 0.4 dB/cm. We confirm this value by fabrication of a 73 mm long spiral ring resonator, with a record quality factor of 1.2 million and an extinction ratio of 9.7 dB.</p

    Exploring the Limit of Multiplexed Near-Field Optical Trapping

    Get PDF
    Optical trapping has revolutionized our understanding of biology by manipulating cells and single molecules using optical forces. Moving to the near-field creates intense field gradients to trap very smaller particles, such as DNA fragments, viruses, and vesicles. The next frontier for such optical nanotweezers in biomedical applications is to trap multiple particles and to study their heterogeneity. To this end, we have studied dielectric metasurfaces that allow the parallel trapping of multiple particles. We have explored the requirements for such metasurfaces and introduce a structure that allows the trapping of a large number of nanoscale particles (>1000) with a very low total power P < 26 mW. We experimentally demonstrate the near-field enhancement provided by the metasurface and simulate its trapping performance. We have optimized the metasurface for the trapping of 100 nm diameter particles, which will open up opportunities for new biological studies on viruses and extracellular vesicles, such as studying heterogeneity, or to massively parallelize analyses for drug discovery

    Efficient Chemical Sensing by Coupled Slot SOI Waveguides

    Get PDF
    A guided-wave chemical sensor for the detection of environmental pollutants or biochemical substances has been designed. The sensor is based on an asymmetric directional coupler employing slot optical waveguides. The use of a nanometer guiding structure where optical mode is confined in a low-index region permits a very compact sensor (device area about 1200 μm2) to be realized, having the minimum detectable refractive index change as low as 10-5. Silicon-on-Insulator technology has been assumed in sensor design and a very accurate modelling procedure based on Finite Element Method and Coupled Mode Theory has been pointed out. Sensor design and optimization have allowed a very good trade-off between device length and sensitivity. Expected device sensitivity to glucose concentration change in an aqueous solution is of the order of 0.1 g/L
    corecore