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Quality factor and finesse of buried In;_,GayAs,P1_, / InP ring resonators have been optimized in this paper by a very general modelling
technique. Limiting effect of propagation loss within the ring has been investigated using a three-dimensional (3D) highly accurate complex
mode solver based on mode matching method to analyze bending loss dependence on ring radius and wavelength. Coupling between
straight input/output (I/0) bus waveguides and ring resonator has been studied by 3D Beam Propagation Method (BPM), deriving coupling
loss and coupling coefficient for a large range of ring radius and bus waveguides-ring distance values (for both polarizations). Ring resonator
has been modelled by the transfer-matrix approach, while finesse and quality factor dependence on radius has been estimated for two
resonator architectures (including one or two 1/0 bus waveguides) and for quasi-TE and quasi-TM modes. Guiding structure has been
optimized to enhance resonator performance. The modelling approach has been validated by comparing results obtained by our algorithm
with experimental data reported in literature. Influence of rejection (at resonance wavelength) at through port on quality factor and finesse
has been widely discussed. A quality factor larger than 8x10° has been predicted for the ring resonator employing only one 1/0 bus

waveguide and having a radius of 400 ym. This resonator exhibits a rejection of -8 dB at through port. [DOI: 10.2971/j€05s.2009.09032]
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1 INTRODUCTION

Although passive integrated optical ring resonators have been
firstly theoretically proposed since about forty years for wave-
length filtering [1], only in the last two decades there has been
an intense research effort to employ them as building blocks in
alarge number of photonic applications, such as multiplexing,
demultiplexing, filtering, switching, and modulation [2, 3].
Very recently, an eight-channel demultiplexer based on ring
resonators fabricated in Silicon-on-Insulator (SOI) technology
and to be used in WDM signals processing has been demon-
strated [4]. A racetrack shaped ring resonator realized by
polymer materials has been employed to fabricate an electro-
optic modulator having a bandwidth up to 165 GHz [5].

The use of integrated optical ring resonators for sensing is be-
coming a more and more attractive research field. A number
of passive architectures based on large-radius ring resonators
have been proposed and experimentally demonstrated for
Sagnac effect-based optical angular rate estimation [6]-[12].
Some ring resonators properly designed to be included in pas-
sive integrated optical gyroscopes have been experimentally
investigated [13]-[15]. A large-radius ring resonator for gyro-
scopic applications in which propagation loss is compensated
by optical gain induced by a pump signal (at 830 nm) has been
fabricated in neodymium-doped glass exhibiting a quality fac-
tor around 2 x 107 (at 1060 nm) [16].
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Chemical and biochemical optical sensing by integrated ring
resonators has been widely demonstrated by fabricating (us-
ing a wide spectrum of materials as glass, polymers and sili-
con nitride) highly compact devices capable to detect a propa-
gating mode effective index change around 10-6-10~7 [17]-
[20]. Finally, micro-displacement and acceleration measure-
ments have been also theoretically and experimentally proved
by optical micro-ring resonators [21, 22].

First ring resonators have been fabricated by polymethyl
methacrylate film deposited on quartz, silver ion exchange
in glass, and silica-on-silicon technology [23]-[25]. To obtain
large quality factors (up to 2 x 107 for ring resonator real-
ized in Silica-on-Silicon technology) by these low index con-
trast technologies, ring resonators with large radii (around
1 mm) and consequently reduced free spectral range (FSR) are
needed.

In the last decade other materials have been employed for
fabrication of ring resonators, such as III-V semiconductors,
silicon, silicon nitride, polymers, and lithium niobate [26].
Electro-optic polymers are very attractive materials for large
bandwidth ring resonator-based optical modulators, whereas
SOI technological platform has permitted to realize ring res-
onators having a FSR > 30 nm [27], which are very effective

ISSN 1990-2573



Journal of the European Optical Society - Rapid Publications 4, 09032 (2009)

C. Ciminelli et. al.

for applications related to optical communications. III-V semi-
conductors technology exhibits the great advantage to allow
the monolithic integration of the ring resonator together with
an electrically pumped, reliable and high performing laser
and other active/passive integrated optical components e. g.
semiconductor optical amplifiers (SOAs) [28]-[30].

In ring resonators realized on III-V semiconductors [31]-[35],
deeply etched (etch depth around 1-2 ym) and high index
contrast waveguides are usually adopted to maintain ring ra-
dius < 10 ym and obtain FSR values > 10 nm. The main
drawback of this design strategy is the quite limited qual-
ity factor and finesse of these devices. Among III-V semi-
conductor materials, In;_,GayAs,P;_, / InP material sys-
tem has permitted to fabricate ring resonators having a lager
quality factor with respect to those realized using GaAs /
AlyGaj_,As material system [36].

An innovative approach for In;_yGayAs, Py, / InP ring res-
onators design has been proposed in [35], where a low index
contrast waveguide has been employed and so a quite large
ring radius (200 ym) is needed to avoid too large bending loss.
Fabricated resonator has a finesse, a quality factor and a FSR
equal to 39, 1.13 x 10° and 0.54 nm, respectively. Main geo-
metrical features and performance parameters of III-V semi-
conductors ring resonators, as reported in literature, are sum-
marized in Table 1.

In this paper we develop an optimization procedure to en-
hance fully-buried Iny _,GayxAsyP;_,, / InP ring resonator per-
formance. Optical coupling (and related loss) between bus
waveguides and resonator has been accurately studied by 3D
BPM and propagation loss has been calculated as depending
on ring radius and wavelength. Quality factor and finesse de-
pendence on radius has been examined and FSR estimated.
Waveguide dimensions and index contrast have been opti-
mized to further enhance the resonator performance. Oper-
ating wavelength A is equal to 1.55 ym.

In Figure 1(a) the cross-section of the investigated waveguide
is depicted. Ing75Gag25Asp55P045 (wavelength band-gap of
1.25 ym and refractive index at operating wavelength n; =
3.361) has been considered for the core region. This material is
assumed to be deposited on a InP (1, = 3.168) substrate and
be completely buried in InP (Ing75Gag25As055P045 and InP
lattice constants are matched). As in [35], the height (k) and
the width (w) of buried core region have been fixed as equal
to 400 nm and 900 nm, respectively. This waveguide supports
both fundamental quasi-TE and quasi-TM modes. Two ring
resonator architectures have been considered. One employing
only one I/O bus waveguide (Figure 1(b)) and the other em-
ploying two I/O bus waveguides (Figure 1(c)). This last ge-
ometry has been assumed as symmetrical, being the two I/O
bus waveguides as placed at the same distance from the ring
resonator.

2 PROPAGATION LOSS

In semiconductor waveguides, loss sources may be due to ma-
terial absorption or possible geometrical or physical discon-

InP

900 nm
InGaAsP

[400 nm

InP - Substrate

(a)

]n%
v\’ <1 Through

(b)

FIG. 1 (a) Cross-section of the guiding structure used for the ring resonator and 1/0
bus waveguides. (b) Ring resonator architectures employing one and (c) two bus

waveguides.

tinuities, which produce some radiated power. Bending in-
duced radiation loss has to be also considered in bent waveg-
uides.

Potential sources of absorption loss in semiconductor waveg-
uides are interband absorption and free carrier absorption
(FCA). Interband absorption occurs when photons with en-
ergy larger than bandgap are absorbed to excite electrons
from the valence band to the conduction band. Therefore,
if operating wavelength is longer than the absorption edge
wavelength of waveguide materials, interband absorption is
avoided. Since operating wavelength (equal to 1.55 ym) is suf-
ficiently longer than InP and In0.75Gag25As055P .45 absorp-
tion edge wavelengths (Ing.75Gag25Asp55P045 and InP ab-
sorption edge wavelengths are equal to 1.25 ym and 0.92 ym,
respectively), interband absorption can be neglected in our in-
vestigation.

FCA is due to carrier transitions within conduction and va-
lence bands. As the doping concentration increases, the num-
ber of free carriers increases and so free carrier absorption in-
creases, too.

For a n-type doped semiconductor, light passing through
the crystal is absorbed by an atom and excites an elec-
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Authors 1BUS /2 Cavity Coupling Quality | Finesse FSR Adopted Materi-
BUSWGs | Length | (Vertical/ Factor (nm) | als
(mm) Lateral)

D. Rafizadeh ef al. (1998) [31] 2 0.033 v 1,500 20 20 GaAs/AlGaAs

P. P. Absil et al. (2000) [32] 2 0.051 L 1,200 14 18 GaAs/AlGaAs
P. P. Absil et al. (2000) [32] 2 0.063 \Y% 7,040 47 10.4 GaAs/AlGaAs
D. G. Rabus et al. (2001) [33] 1 1.256 L 19,400 5 0.4 GalnAsP/InP

R. Grover et al. (2003) [34] 2 0.082 L 6,250 32 8 GalnAsP/InP

R. Grover et al. (2003) [34] 2 0.029 \% 6,200 100 23 GalnAsP/InP
S.J. Choi et al. (2004) [35] 2 1.256 L 113,000 39 0.54 GalnAsP/InP

TABLE 1 11I-V semiconductors passive ring resonators main geometrical features and performance parameters.
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FIG. 2 FCA induced loss dependence on free carrier concentration for n-type and p-type

doped Iny_yGaxAsyP;_, (log-log scale).

tron at the bottom of the conduction band to a higher
energy level. The absorption coefficient a, s, for n-doped
In;_,GayAsyP1,, is given by the following equation (at
operating wavelength) [37]:

WL 434X 1071 N,
nfe ™ 0.342 —0.0172 logyy Ne

[dB/Cm} @8]

where N, is the electron concentration in cm 3.

For a p-type In;_,GayAsyP;_,, FCA is due to intra-valence-
band absorption. In this process, the energy of the absorbed
light can excite various transitions between the heavy-hole
and the light-hole valence band. The absorption coefficient
ap, fc (at operating wavelength) for p-doped Inj _GayAsy P,
is given by [37]:

&, fe =9.9x 107 Ny, [dB/cm] @)

where N}, is the hole concentration in cm 2.

Absorption coefficients &), r. and a . dependence on free
carrier concentration is shown in Figure 2, for p-type and
n-type doping. FCA is larger for p-type doping than for n-
type one and, as previously anticipated, it increases when free
carrier concentration increases. If InP and Inl,xGaxAsyPl,y
are intentionally undoped, free carrier absorption can be usu-
ally neglected (InP intrinsic carrier concentration is equal to
1 x 107 cm™3). On the other hand, if Iny_,GayAsyP1_,, or InP
free carrier concentration is larger than 101 ¢cm 3, free carrier

absorption cannot be neglected. We have assumed that InP
and Ing75Gag25Asp55P045 are not intentionally doped and,
then, we have neglected FCA induced loss.

Bending loss has been calculated by a full-vectorial 3D mode
solver based on mode matching method [38] (in computation
of optical modes by 3D mode solver, we have assumed a cal-
culation mesh including 80,000 points). This method has been
already adopted to investigate anti-resonant reflecting optical
bent waveguides in In;_,GayAs,P;_,, / InP technology [39]
and SOI bent rib waveguides [40]. A perfectly matched layer
(PML) located at the outer side of the bend has been employed
in our simulations (as in [39, 40]) to absorb the power leaked
out of the bend, avoiding any parasitic reflection.

Bending loss dependence on curvature radius (R) has been
investigated for R ranging from 40 ym to 1000 ym, A =
1550 nm, and for quasi-TE and quasi-TM modes (see Fig-
ure 3(a)). Bending loss exponentially decreases by increasing
R and it is larger for quasi-TM than for quasi-TE mode. This
is due to the fact that quasi-TE mode is more confined in the
waveguide core region than quasi-TM one (for example, as-
suming R = 200 ym, confinement factor in the core region is
equal to 42.8% for quasi-TE and 38.4% for quasi-TM mode).

Bending loss practically becomes negligible for R > 500 ym
(¢ < 1073 dB/cm) and so it has not been plotted for R >
600 ym. For R = 200 ym (radius value used in [35]) and A =
1550 nm, bending loss is equal to 3.13 dB/cm for quasi-TM
and 1.45 dB/cm for quasi-TE mode. For R < 100 pm, bend-
ing loss is larger than 50 dB/cm so, adopting this waveguide
technology, we expect that ring resonator having R < 100 ym
exhibits only modest performance. Consequently the buried
waveguide considered in this paper is not employable to real-
ize optical micro-ring resonators.

Assuming R = 200 ym, wavelength influence on bending loss
has been investigated, for both polarizations, varying A in the
range from 1500 to 1600 nm (see Figure 3(b)). Wavelength in-
fluence on InP and Ing 75Gag 25As055P0.45 refractive index has
been taken into account by the model reported in [37]. Bend-
ing loss significantly increases with A for either quasi-TE or
quasi-TM mode. For all considered wavelengths, bending loss
is larger for quasi-TM than for quasi-TE mode. A similar bend-
ing loss dependence on wavelength has been observed (also
experimentally) for a Si-wire waveguide [41].
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FIG. 3 Bending loss dependence on radius assuming A = 1550 nm (a) and wavelength
assuming R = 200 um (b). In the plot of bending loss dependence on radius semi-log

scale has been used.
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FIG. 4 (a) Total loss of optical signal propagating within the ring resonator as a func-
tion of R, for quasi-TE and quasi-TM modes (A = 1550 nm). Semi-log scale has been
used. (b) Propagation loss dependence on wavelength for R = 200 um and for both

polarizations.

Propagation loss in the ring resonator that we are investi-
gating in this paper is the sum of absorption, bending and
scattering losses suffered by the employed 400 nm high and
900 nm width buried Ing 75Gag25As055P0.45 / InP waveguide.
Absorption loss has been proved to be negligible, bending loss
has been plotted in Figure 3 as dependent on radius of curva-
ture and wavelength, finally, scattering loss has been calcu-
lated as a function of radius and wavelength in [42]. Then,
assuming A = 1550 nm, optical propagation loss within the
ring resonator has been calculated for R ranging from 40 ym
to 1000 pm and for both polarizations (see Figure 4(a)). In this
calculation, some results included in [42] has been used. For R
values lower than 180 ym, bending loss is the dominant con-
tribution (bending loss depends exponentially on R) whereas,
for R larger than 300 ym scattering loss becomes dominant.
Propagation loss decreases by increasing R until it reaches
the values of 0.57 dB/cm (for quasi-TE mode) and 0.85 dB/cm
(for quasi-TM mode), representing the minimum propagation
loss achievable by this technology (for A = 1550 nm). For
R = 200 ym, total propagation loss dependence on wave-
length (Figure 4(b)) is dominated by bending loss, so total
propagation loss increases by increasing A. Propagation loss
relevant to quasi-TM mode remains larger than propagation
loss relevant to quasi-TE mode in the whole considered wave-
length range. In the following sections, operating wavelength
has been always fixed as 1550 nm.

3 COUPLING BETWEEN BUS
WAVEGUIDES AND RING RESONATOR

The optical coupling between I/0 straight bus waveguides
and the ring resonator has been investigated by 3D BPM [43].
In particular, the structure shown in Figure 5 has been sim-
ulated for R ranging from 100 ym to 1000 ym. We have indi-
cated minimal gap between the waveguides (achieved in the
middle of the structure) as g (g is the distance between waveg-
uides sidewalls, as in Figure 5) and structure length has been
fixed so that, at the input and output cross-sections, the dis-
tance between the waveguides is equal to 10 g (at this distance
the waveguides can be considered uncoupled).

An input optical mode (having amplitude equal to a) is
launched in the straight waveguide and optical mode ampli-
tudes at output cross section have been observed. Propagation
step has been varied for all R considered values and it has
been fixed as equal to R x 10> (for example, for R = 500 ym
and ¢ = 1 um, the propagation step is equal to 5nm and
the number of propagation steps is around 38,000). Optical

& e [Cross-section y[
: X

x n, - —=outl | P
109 /_\
H g
| /N
N v
Sout2 1ﬁ — 7k A
“\L\\
InGaAsP

FIG. 5 Structure simulated by 3D BPM to investigate optical coupling between straight

I/0 waveguides and the ring.
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FIG. 6 Power transfer (x2) between straight and bent waveguides dependence on R and g, (a) for quasi-TE and (b) uasi-TM mode. Coupling loss (A¢) dependence on R and g,

(c) for quasi-TE and (d) quasi-TM mode.

mode amplitude at straight waveguide output is indicated as
b and optical mode amplitude at the output of bent waveg-
uide is indicated as c. The coupling coefficient x between the
two modes propagating in straight and bent waveguides is
given by the ratio c/a (k2 indicates the power transfer between
the two waveguides), whereas coupling loss A¢ (usually ex-
pressed in percentage) is equal to

P+

Ac=1-"—

®)

The coefficient vy (that will be used in the following section),
taking into account loss due to the bus waveguides-ring cou-
pling, is defined as equal to (b + ¢?)/a* and so Ac =1 — 1.

Power transfer between the two waveguides (k%) and cou-
pling loss Ac (in percentage) have been plotted (in Figure 6)
for both polarizations, for R ranging between 100 ym and
1000 pym, and gap g varying between 0.6 ym and 1.2 ym. The
dotted curves in the density plots reported in Figure 6 show
level curves. Data reported in Figure 6 show that, by decreas-
ing g, a power transfer increase is induced and that a R in-
crease produces a power transfer increase (these considera-
tions are valid for both polarizations). Coupling loss exhibits
a dependence on R and g quite similar with that exhibited by
x2, reaching the largest values for largest R value and lowest

gap value. For better comparison of coupling loss and power
transfer related to different polarizations, we have plotted
k% — % and AIM — ATE(see Figure 7). Figure 7(a) shows
that power transfer is larger for quasi-TM mode than for quasi
TE one (the difference k%, — x4 is always positive), and that
the difference between x2,, and x% is lower than 2.6%. This
difference is maximum for R = 100 ym and g = 1.2 ym and
for R = 1000 ym and g = 0.6 ym. As shown by Figure 7(b),
coupling loss related to TM mode is larger than coupling loss
related to TE mode for R > 450470 um (the level curve rel-
evant to 0% is quite horizontal). The difference ATM — ALE
reaches its maximum value (6.65%) for R = 1000 ym and
g = 0.6 ym, and its minimum value (-2.63%) for R = 100 ym
and ¢ = 0.6 ym.

4 RING RESONATOR MODELLING AND
OPTIMIZATION

Ring resonator has been modelled by using the standard
transfer-matrix approach firstly reported in [44] and the fol-
lowing spectral responses at through port (see Figure 1(b), (c))
have been obtained in case of one or two I/O bus waveguides,
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respectively:

2

Vo — k2 = elfleal/2
1= /7 — 2 elfleal/2

= (7 _ Kz) 1 -y elfle—aL/2

1— (7 —x2) elfLe—al/2
where « is the attenuation coefficient (in power) due to propa-
gation loss within the ring (plotted in Figure 4(a) as dependent
on R), B is the propagation constant of optical modes within
the ring and L = 27R is the resonator length.

T1puswe (/\) =

TZbusWGs (A)

2

4)

T(A) is minimum (equal to Ty,;,) for BL = 2m 7 whereas T(A)
is maximum (equal to Ty,y) for BL = (2m + 1)7, being m
a natural number. The ratio between T,,;,, and T, has been
indicated as through rejection (T};) and it is equal to (for the
two considered architectures):

’Y—Kz_’y efzxL/Z 2
T 1—/y—k2 e—al/2
i 1busWG —
r],1bus < N gfaL/2>

1+ ,),,KZ e—al/2

( 1—7y L,—aL/Z
_ W)
TrjabusWGs = | 7 gpteaizz \ ®)

2

Starting from the spectral response at through port, some
well-known ring resonator figures of merit can be defined.

FSR is the difference between resonance wavelengths (reso-
nance occurs for BL = 2mm), the finesse F and the quality
factor Q can be defined as:

_ FSR

_Mo
F=5r2=am (©)

where §A is the resonance spectral width calculated at Tyx /2
(usually named Full Wave at Half Maximum, FWHM) and A
is the resonance wavelength.

We have observed that fixing R and incoming light polar-
ization in T,; expressions (reported in Eq. (5)) the only un-
known variable is ¢ (x and 7 depend only on g if R and
polarization are known). So for both ring resonator architec-
tures, for both polarizations and each R value we have calcu-
lated by Eq. (5) the g value permitting to obtaining a specified
through rejection value (-8 dB, -12 dB and -16 dB). Obtained
g values have been plotted in Figure 8. In all cases, g value
permitting to fulfil the specification imposed on T}; increases
for R < 340 ym and becomes maximum for R = 340 ym.
Then, for R > 340 ym g value linearly decreases. Gap val-
ues increase when T,; decreases (in magnitude) and they are
larger for quasi-TE than for quasi-TM mode. For R = 200 ym,
T,j = —8 dB and the two bus waveguides architecture, we ob-
tain g = 0.9608 ym (being lower than 1.5% the relative error
with respect to experimentally reported value, 0.95 ym [35]).

Fixing R, T,; and input signal polarization, for both architec-
tures (one/two bus waveguides) we have obtained an unique
g value. For every couple of R and g values, we have cal-
culated x and -y (see Figure 6). Moreover, for every R value
we have estimated the propagation loss a (see Figure 4(a))
and calculated B using the 3D mode solver for bent waveg-
uides [38]. At this stage we are able to calculate the spectral
response at through port by Eq. (4). After that, F, Q, and FSR
can be evaluated. Then, we have investigated Q, F and FSR
dependence on radius for one/two bus waveguides archi-
tectures and both polarizations (see Figure 9 and Figure 10).
From Figure 9 it can be observed that high Q (or F) and high
through rejection (in magnitude) are conflicting requirements.
Fixing radius, incoming light polarization and architecture, if
a large Tr]' value (for example, -16 dB) is required, we have
to accept a lower Q value with respect to the case in which
a lower T;; value (for example, -8 dB) is fixed. For a certain
T,j value, Q and F dependence on radius is not monotone.
Q and F are maximum for R around 300-400 ym. R values
relevant to Q maxima are larger than R values relevant to F
maxima. For low R values, as R increases Q and F quickly in-
crease, too. After the maximum, Q slowly decreases when R
increases whereas F decrease is faster. Quality factor and fi-
nesse are larger for one bus waveguide architecture than for
two bus waveguides architecture. Finally, quasi-TE polariza-
tion permits to achieve larger Q and F values than quasi-TM
one (in fact, quasi-TM mode loss is larger than quasi-TE mode
one).

For R = 200 ym, quasi-TE mode, two bus waveguides archi-
tecture and T,; = —8 dB (these assumptions are the same as
in [35]) we have obtained F = 39.86 and Q = 1.15 x 10°. These
values are in good agreement (relative error < 3%) with those
experimentally estimated [35] and summarized in Table 1.
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FIG. 9 (a) Quality factor and finesse dependence on R for one bus waveguide architecture and quasi-TE mode, (b) one bus waveguide architecture and quasi-TM mode, (c) two
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Journal of the European Optical Society - Rapid Publications 4, 09032 (2009)

C. Ciminelli et. al.

0.6¢

0.4

0.2}

Free Spectral Range (nm)

200 400 600 800 1000

Radius [pm]

(a)

< <
N (@)

Free Spectral Range (nm)
<o
[\

200 1000

800

400 600

Radius [pm]

(b)

FIG. 10 (a) FSR dependence on ring resonator radius for quasi-TE and (b) quasi-TM

modes.

FSR is not influenced by the device’s geometry (one/two bus
waveguides) but only by incoming light polarization (this in-
fluence is quite modest because the adopted waveguide ex-
hibits a very reduced birefringence). For quasi-TE and quasi-
TM mode, we can see that FSR monotonically decreases by
increasing R. Maximum achievable FSR value is lower than
0.7 nm whereas FSR is equal to 0.3-0.4 nm for R ranging from
300 pm to 400 um (this is the range in which Q and F are max-
imum).

Optimization procedure results previously shown have been
obtained assuming same waveguide as in [35], having a width
w = 900 nm, a height & = 400 nm and an index contrast An =
n1 — np equal to 0.193. We have also investigated the effect of
waveguide width and index contrast change on ring resonator
quality factor and finesse. Three index contrast values (0.282,
0.193 and 0.159) corresponding to three different core materi-
als have been considered. In particular the possibility of us-
ing Ing.66Gag34As.76P0.24 (11 = 3.450), Ing.75Gag 25 As0.55P0.45
(1’!1 = 3.361) and Il’lo_gGao.zAS().45P0_55 (111 = 3.327) as core
materials has been investigated. Lattice constants of all these
materials are matched with InP lattice constant. Waveguide
width has been varied in the range from 700 nm to 1100 nm.
In this analysis, the ring radius of 200 m has been maintained
as a constant.

An=0.159

~—~

-quasi-TE
-quasi-TM

/"

|An=0.282

2
1

Propagation loss (dB/cm)

700 800 900
Waveguide width (nm)

FIG. 11 Propagation loss dependence on waveguide width and An (A = 1550 nm,

R =200 pm).

For R = 200 ym and both polarizations, propagation loss
within the ring has been calculated as a function of w by the
method reported in Section 2 (see Figure 11). For all An values,
propagation loss monotonically decreases by increasing w, be-
ing larger for quasi-TM mode than for quasi-TE one. Mini-
mum value of propagation loss (x = 0.56 dB/cm) has been
achieved for w = 1100 nm, An = 0.193 and quasi-TE mode.
Adopting this waveguide features and R = 200 ym, quality
factor values of 434,000 and 286,000 have been obtained for
one bus waveguide architecture and two bus waveguides, re-
spectively (in both cases T;; = —8 dB). These Q values are
significantly larger than that experimentally obtained in [35]
using a resonator having R = 200 ym and a non-optimized
waveguide.

Main geometrical features and performance parameters of six
optimized ring resonator structures are summarized in Ta-
ble 2. Maximum quality factor (Q = 8.08 x 10%) is achieved
for R = 400 ym, g = 1.512 ym, one bus waveguide architec-
ture, quasi-TE mode and T,]- = —8dB.

5 CONCLUSION

With the purpose of optimizing device performance, quality
factor and finesse dependence on the resonator geometry and
waveguide, radius, and excited optical mode has been esti-
mated for a Iny_,GayAsyP;_,, / InP ring resonator employing
a buried wave-guiding structure. A very general modelling
procedure, adoptable to theoretically investigate and design a
wide spectrum of integrated optical ring resonators to be re-
alized in different technologies, has been developed and vali-
dated using experimental data in literature.

Reported data show that one I/O bus waveguide architecture
permits to achieve larger Q and F values than two bus waveg-
uides one and that the achievement of large Q and F values
is conflicting with large through rejections. These two conclu-
sions are quite general and we expect that they are true for
different kinds of passive ring resonators.

For one I/0O bus architecture maximum quality factor value
(8-08 x 10°) has been predicted for R = 400 ym. (T;; = —8dB).
A 32% decrease in Q value is induced requiring a T}; (in dB)
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1BUS /2 Waveguide
BUS WGs features

Radius
(pm)

g (pm)

Finesse

Quality
Factor

FSR (nm) | T, (dB)

2 w =900 nm
h =400 nm
An =0.193

380 1.318

416,000 84.1 0.31 -8

2 w =900 nm
h =400 nm
An =0.193

500 0.759

77,000 11.8 0.24

1 w =900 nm
h =400 nm
An =0.193

400 1.512

808,000 79.8 0.3 -8

1 w =900 nm
h =400 nm
An =0.193

400 1.346

552,000 106.1 0.3 -16

1 w = 1100 nm
h =400 nm
An =0.193

200 0.592

434,000 166.5 0.54 -8

2 w = 1100 nm
h =400 nm
An =0.193

200 0.524

286,000 109.6 0.54 -8

TABLE 2 Geometrical features and performance parameters of optimized ring resonators structures.

doubling. For two I/O buses architecture, R value maximiz-
ing the quality factor is equal to 380 ym. For this R value,
T,j = —8dB and quasi-TE mode, we have Q = 4.16 x 10°,
F = 841 and FSR = 0.31 nm. Thus, for two bus waveg-
uides architecture, passing from R = 200 ym(as in [35]) to
R = 380 um, Q becomes quite four times larger and F is dou-
bled at the expense of a FSR reduction of about 20%. Maintain-
ing R = 200 ym and optimizing only the waveguide struc-
ture, a Q increase of 2.5 times has been proved as obtainable.
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