354 research outputs found

    Eastern Lomonosov Ridge: Constraints for a variable ice mass thickness during former glaciations

    Get PDF
    Here we present dense acoustic and swath bathymetry data sets as well as geological age constraints that allow a new view on past glacial processes at the Siberian termination of Lomonosov Ridge in the Arctic Ocean between 81° and 84° 20′ N. Here, the seabed is marked by three sets of streamlined glacial lineations observed at present water depths of ~760 m to 1250 m. The shallower streamlined glacial lineations were likely formed during MIS 6 and the deeper ones during MIS 12. Other observations include recessional moraines and pockmarks on a flattened ridge crest. In the subsurface, an acoustically transparent unit above well stratified strata is interpreted as subglacial diamicton overlying pre-glacial sediments at an erosional contact. Furthermore, the diamicton is interpreted to have been deposited as lenses in glacially-eroded proximal settings. In contrast, some parts of the seafloor and subsurface show no glacial overprint in water depths as shallow as 819 m. To explain these findings, we propose that the Siberian termination of Lomonosov Ridge was covered by an ice mass of spatial and temporal variable thickness between ~780 to ~1250 m, that was likely composed of sea ice and thick icebergs calved from ice shelves

    Glacial landforms on the Siberian termination of the Lomonosov Ridge – hints for a 1 km thick pan-Arctic ice shelf?

    Get PDF
    The Arctic Ocean is mainly surrounded by continents and large shelf seas. During glacial times the ocean was covered by thick sea ice and/or fragments of ice sheets and ice shelfs. Evidences for this are erosion of the seafloor along the surrounding margins and also in the center of the Arctic Ocean. Glacial processes have modified the present and past seafloor down to water depths of more than a kilometer. This observation triggered a discussion about the existence of a 1 km thick pan-Arctic ice shelf during the LGM or earlier. The Lomonosov Ridge is a continental sliver and submarine ridge in the Arctic Ocean which rises several kilometers above the adjacent deep sea plains. It has no onshore catchment areas like the glaciated margins surrounding the Central Arctic Ocean which are strongly modified by glaciers and ice streams. Nevertheless, evidences for glacial erosion are found on the ridge. In our contribution, we investigate the Siberian termination of the Lomonosov Ridge between 81˚-84˚N with bathymetric, sediment echosounder and multichannel seismic reflection data acquired with RV Polarstern in 2014 and 2018. Bathymetry data reveal three sets of glacial lineations, differentiated by their orientation, which are traced to a maximum water depth of ~1250 m. A flat-topped ridge crest shows recessional moraines and pockmarks that might be glacially induced. Sediment echosounder and multichannel seismic reflection data show deeper units with well stratified reflections that are truncated and incised. Based on these data, we will discuss the pros and cons for the existence of a past 1 km thick pan-Arctic ice shelf on the Siberian termination of Lomonosov ridge

    Submarine landslides along the Siberian termination of the Lomonosov Ridge, Arctic Ocean

    Get PDF
    Acoustic and detailed swath bathymetry data revealed a systematic picture of submarine landslides on the Siberian part of Lomonosov Ridge. Whereas numerous studies on mass movement exist along the margin of the Arctic Ocean less is known from central Arctic. A regional survey comprising swath bathymetry, sediment echo sounder and multichannel seismic profiling was performed on the southeastern Lomonosov Ridge. The data provide constraints on the present-day morphology of the Siberian part of Lomonosov Ridge, between 81°–84°N and 140°–146°E. We mapped twelve crescent-shaped escarpments located on both flanks on the crest of Lomonosov Ridge. The escarpments are 2.1 to 10.2 km wide, 1.7 to 8.2 km long and 125 to 851 m high from which 58 to 207 m are occupied by crescent-shaped headscarps. Subbottom data show chaotic reflections within most of the escarpment areas. The unit is overlain by ~110–340 m of semi-coherent parallel reflections. At its bottom the chaotic reflections are limited by a partly eroded high-amplitude reflection sequence that is inclined with <1° basinwards. We find the escarpments to be remnants of submarine landslide events that mobilized 0.09 to 7.58 km3 of sediments between mid Pliocene and mid Miocene. The relatively small amounts of mobilized sediments seem to be typical for the Lomonosov Ridge. The epoch corresponds to the ongoing subsidence of the Lomonosov Ridge below sea level. During that time deposition and the load of sediments changed. We suggest that changes in sediment type preconditioned, and co-occurring earthquakes finally triggered the submarine landslides

    High-amplitude lake-level changes in tectonically active Lake Issyk-Kul (Kyrgyzstan) revealed by high-resolution seismic reflection data

    Get PDF
    A total of 84 seismic profiles, mainly from the western and eastern deltas of Lake Issyk-Kul, were used to identify lake-level changes. Seven stratigraphic sequences were reconstructed, each containing a series of delta lobes that were formed during former lake-level stillstands or during slow lake-level increase or decrease. The lake level has experienced at least four cycles of stepwise rise and fall of 400 m or more. These fluctuations were mainly caused by past changes in the atmospheric circulation pattern. During periods of low lake levels, the Siberian High was likely to be strong, bringing dry air masses from the Mongolian steppe blocking the midlatitude Westerlies. During periods of high lake levels, the Siberian High must have been weaker or displaced, and the midlatitude Westerlies could bring moister air masses from the Mediterranean and North Atlantic regions

    A revised core-seismic integration in the Molloy Basin (ODP Site 909): Implications for the history of ice rafting and ocean circulation in the Atlantic-Arctic gateway

    Get PDF
    Today's cryosphere reflects an extreme climate state that developed through stepwise global Cenozoic cooling. In this context the opening of the Fram Strait, the Atlantic-Arctic Gateway (AAG), enabled deep-water exchange between the northern North Atlantic and the Arctic Ocean and thereby influenced global ocean circulation and climate. Here we present a new age model for Ocean Drilling Program Site 909 located in the Molloy Basin, a key site to investigate the late opening phase of the central Fram Strait and the early history of oceanic circulation in the AAG. Our results are based on a revised magnetostratigraphy calibrated by new palynomorph bioevents, which shifts previously used stratigraphies for Site 909 to significantly younger ages in the time interval from c. 15 Ma to 3 Ma. The revised late Miocene to present chronology combined with an improved core-log-seismic integration leads to a new high-resolution seismic stratigraphy for the central Fram Strait that allows a more comprehensive correlation with seismic markers from the western Barents Sea margin and also the adjacent Yermak Plateau. The new stratigraphy implies that prominent maxima in coarse sand particles and kaolinite, often interpreted as evidence for ice rafting in the Fram Strait occur at c. 10.8 Ma, c. 3 Myr later as previously inferred and thus well after the Middle Miocene Climate Transition (c. 15–13 Ma). In the late Tortonian (<7.5 Ma), sediment transport became current controlled, mainly through a western, recirculating branch of the West Spitsbergen Current. This transport was strongly enhanced between c. 6.4 and 4.6 Ma and likely linked to the subsiding Hovgaard (Hovgård) Ridge and the widening of the AAG. Late Pliocene to Pleistocene seismic reflectors correlate with episodes of elevated ice-rafted detritus input related to major steps in Northern Hemisphere ice sheet growth such as the prominent glacial inception MIS M2 that predates the mid-Piacenzian Warm Period and the intensification of Northern Hemisphere glaciation starting at c. 2.7 Ma. At the beginning of the Mid Pleistocene Transition (c. 1.2–0.8 Ma), sediment accumulation in the Fram Strait significantly decreased

    The turbidity maximum zone of the Yenisei River (Siberia) and its impact on organic and inorganic proxies

    Get PDF
    A general overview of the processes taking place in the summer mixing zone of the fresh Yenisei River water with the marine waters of the Kara Sea is given in this study, with special emphasis on the interaction between bulk (total suspended matter), inorganic (Fe, Mn) and organic (suspended organic carbon, suspended nitrogen) proxies. Within the mixing zone, a zone of enhanced turbidity (maximum turbidity zone) was observed comparable to studies in other rivers. Flocculation of particles due to changes in salinity and hydrography cause this maximum turbidity zone, and resuspension additionally enhances the turbidity in the near-bottom layers. Organic matter behaves conservatively in the mixing zone in terms of its percentage of suspended matter. It, however, undergoes degradation as revealed by amino acid data. Inorganic, redox- and salinity-sensitive, proxies (Mn, Fe) behave non-conservatively. Dissolved iron is removed at low salinities (<2) due to precipitation of iron oxyhydroxides and adsorption of manganese on suspended particles, enhancing the Mn/Al ratio of the suspended matter in the same zone. At higher salinities within the mixing zone, Fe/Al and Mn/Al ratios of the suspended particles are depleted due to resuspension of sediment with lower Fe/Al and Mn/Al ratios. Dissolved manganese concentrations are significantly higher in the near-bottom layers of the mixing zone due to release from the anoxic sediment. All things considered, the Yenisei River mixing zone shows patterns similar to other world's rivers

    Arctic megaslide at presumed rest

    Get PDF
    Published version. Source at http://doi.org/10.1038/srep38529. License CC BY 4.0.Slope failure like in the Hinlopen/Yermak Megaslide is one of the major geohazards in a changing Arctic environment. We analysed hydroacoustic and 2D high-resolution seismic data from the apparently intact continental slope immediately north of the Hinlopen/Yermak Megaslide for signs of past and future instabilities. Our new bathymetry and seismic data show clear evidence for incipient slope instability. Minor slide deposits and an internally-deformed sedimentary layer near the base of the gas hydrate stability zone imply an incomplete failure event, most probably about 30000 years ago, contemporaneous to or shortly after the Hinlopen/Yermak Megaslide. An active gas reservoir at the base of the gas hydrate stability zone demonstrate that over-pressured fluids might have played a key role in the initiation of slope failure at the studied slope, but more importantly also for the giant HYM slope failure. To date, it is not clear, if the studied slope is fully preconditioned to fail completely in future or if it might be slowly deforming and creeping at present. We detected widespread methane seepage on the adjacent shallow shelf areas not sealed by gas hydrates

    Petrophysical characterization of the lacustrine sediment succession drilled in Lake El‘gygytgyn, Far East Russian Arctic

    Get PDF
    Seismic profiles of Far East Russian Lake El’gygytgyn which was formed by a meteorite impact some 3.6 million years ago show a stratified sediment succession that can be separated into Subunits Ia and Ib at approximately 167 m below lake floor (= ∼3.17 Ma). The former is well-stratified, while the latter is acoustically more massive. The sediments are intercalated with frequent mass movement deposits mainly in the proximal parts, while the distal part is almost free of such deposits at least in the upper part. In spring 2009, a long core drilled in the lake center within the framework of the International Continental Scientific Drilling Program (ICDP) penetrated the entire lacustrine sediment succession down to ~320 m below lake floor and about 200 m further into the meteorite-impact related bedrock. Downhole logging data down to 390 m below lake floor show that the bedrock and the lacustrine part of the core differ largely in their petrophysical characteristics. The contact between the bedrock and the lacustrine sediments is not abrupt, but rather transitional with a mixture of impact-altered bedrock clasts in a lacustrine matrix with varying percentages. Physical and chemical proxies measured on the cores can be used to divide the lacustrine part into five different clusters. These can be plotted in a redox-condition vs. input type diagram with total organic carbon content and magnetic susceptibility values indicating anoxic or oxic conditions and with the Si/Ti ratio representing more clastic or more biogenic input. Plotting the clusters in this diagram allows identifying clusters that represent glacial phases (Cluster I), super interglacials (Cluster II), and interglacial phases (Clusters III and IV)

    Extraordinary rocks from the peak ring of the Chicxulub impact crater: P-wave velocity, density, and porosity measurements from IODP/ICDP Expedition 364

    Get PDF
    Joint International Ocean Discovery Program and International Continental Scientific Drilling Program Expedition 364 drilled into the peak ring of the Chicxulub impact crater. We present P-wave velocity, density, and porosity measurements from Hole M0077A that reveal unusual physical properties of the peak-ring rocks. Across the boundary between post-impact sedimentary rock and suevite (impact melt-bearing breccia) we measure a sharp decrease in velocity and density, and an increase in porosity. Velocity, density, and porosity values for the suevite are 2900–3700 m/s, 2.06–2.37 g/cm3, and 20–35%, respectively. The thin (25 m) impact melt rock unit below the suevite has velocity measurements of 3650–4350 m/s, density measurements of 2.26–2.37 g/cm3, and porosity measurements of 19–22%. We associate the low velocity, low density, and high porosity of suevite and impact melt rock with rapid emplacement, hydrothermal alteration products, and observations of pore space, vugs, and vesicles. The uplifted granitic peak ring materials have values of 4000–4200 m/s, 2.39–2.44 g/cm3, and 8–13% for velocity, density, and porosity, respectively; these values differ significantly from typical unaltered granite which has higher velocity and density, and lower porosity. The majority of Hole M0077A peak-ring velocity, density, and porosity measurements indicate considerable rock damage, and are consistent with numerical model predictions for peak-ring formation where the lithologies present within the peak ring represent some of the most shocked and damaged rocks in an impact basin. We integrate our results with previous seismic datasets to map the suevite near the borehole. We map suevite below the Paleogene sedimentary rock in the annular trough, on the peak ring, and in the central basin, implying that, post impact, suevite covered the entire floor of the impact basin. Suevite thickness is 100–165 m on the top of the peak ring but 200 m in the central basin, suggesting that suevite flowed downslope from the collapsing central uplift during and after peak-ring formation, accumulating preferentially within the central basin

    Ocean Drilling Perspectives on Meteorite Impacts

    Get PDF
    Extraterrestrial impacts that reshape the surfaces of rocky bodies are ubiquitous in the solar system. On early Earth, impact structures may have nurtured the evolution of life. More recently, a large meteorite impact off the Yucatán Peninsula in Mexico at the end of the Cretaceous caused the disappearance of 75% of species known from the fossil record, including non-avian dinosaurs, and cleared the way for the dominance of mammals and the eventual evolution of humans. Understanding the fundamental processes associated with impact events is critical to understanding the history of life on Earth, and the potential for life in our solar system and beyond. Scientific ocean drilling has generated a large amount of unique data on impact pro- cesses. In particular, the Yucatán Chicxulub impact is the single largest and most sig- nificant impact event that can be studied by sampling in modern ocean basins, and marine sediment cores have been instrumental in quantifying its environmental, cli- matological, and biological effects. Drilling in the Chicxulub crater has significantly advanced our understanding of fundamental impact processes, notably the formation of peak rings in large impact craters, but these data have also raised new questions to be addressed with future drilling. Within the Chicxulub crater, the nature and thickness of the melt sheet in the central basin is unknown, and an expanded Paleocene hemipelagic section would provide insights to both the recovery of life and the climatic changes that followed the impact. Globally, new cores collected from today’s central Pacific could directly sample the downrange ejecta of this northeast-southwest trending impact. Extraterrestrial impacts have been controversially suggested as primary drivers for many important paleoclimatic and environmental events throughout Earth history. However, marine sediment archives collected via scientific ocean drilling and geo- chemical proxies (e.g., osmium isotopes) provide a long-term archive of major impact events in recent Earth history and show that, other than the end-Cretaceous, impacts do not appear to drive significant environmental changes
    corecore