103 research outputs found
Nanoscale electrical conductivity of the purple membrane monolayer
Nanoscale electron transport through the purple membrane monolayer, a two-dimensional crystal lattice of the transmembrane protein bacteriorhodopsin, is studied by conductive atomic force microscopy. We demonstrate that the purple membrane exhibits nonresonant tunneling transport, with two characteristic tunneling regimes depending on the applied voltage (direct and Fowler-Nordheim). Our results show that the purple membrane can carry significant current density at the nanometer scale, several orders of magnitude larger than previously estimated by macroscale measurements
Nanoscale electrical conductivity of the purple membrane monolayer
Nanoscale electron transport through the purple membrane monolayer, a two-dimensional crystal lattice of the transmembrane protein bacteriorhodopsin, is studied by conductive atomic force microscopy. We demonstrate that the purple membrane exhibits nonresonant tunneling transport, with two characteristic tunneling regimes depending on the applied voltage (direct and Fowler-Nordheim). Our results show that the purple membrane can carry significant current density at the nanometer scale, several orders of magnitude larger than previously estimated by macroscale measurements
Secular evolution versus hierarchical merging: galaxy evolution along the Hubble sequence, in the field and rich environments
In the current galaxy formation scenarios, two physical phenomena are invoked
to build disk galaxies: hierarchical mergers and more quiescent external gas
accretion, coming from intergalactic filaments. Although both are thought to
play a role, their relative importance is not known precisely. Here we consider
the constraints on these scenarios brought by the observation-deduced star
formation history on the one hand, and observed dynamics of galaxies on the
other hand: the high frequency of bars and spirals, the high frequency of
perturbations such as lopsidedness, warps, or polar rings.
All these observations are not easily reproduced in simulations without
important gas accretion. N-body simulations taking into account the mass
exchange between stars and gas through star formation and feedback, can
reproduce the data, only if galaxies double their mass in about 10 Gyr through
gas accretion. Warped and polar ring systems are good tracers of this
accretion, which occurs from cold gas which has not been virialised in the
system's potential. The relative importance of these phenomena are compared
between the field and rich clusters. The respective role of mergers and gas
accretion vary considerably with environment.Comment: 18 pages, 8 figures, review paper to "Penetrating Bars through Masks
of Cosmic Dust: the Hubble Tuning Fork Strikes a New Note", Pilanesberg, ed.
D. Block et al., Kluwe
Diffusion in low-dimensional lipid membranes
The diffusion behavior of biological components in cellular membranes is vital to the function of cells. By collapsing the complexity of planar 2D membranes down to one dimension, fundamental investigations of bimolecular behavior become possible in one dimension. Here we develop lipid nanolithography methods to produce membranes, under fluid, with widths as low as 6 nm but extending to microns in length. We find reduced lipid mobility, as the width is reduced below 50 nm, suggesting different lipid packing in the vicinity of boundaries. The insertion of a membrane protein, M2, into these systems, allowed characterization of protein diffusion using high-speed AFM to demonstrate the first membrane protein 1D random walk. These quasi-1D lipid bilayers are ideal for testing and understanding fundamental concepts about the roles of dimensionality and size on physical properties of membranes from energy transfer to lipid packing
Stellar populations of bulges at low redshift
This chapter summarizes our current understanding of the stellar population
properties of bulges and outlines important future research directions.Comment: Review article to appear in "Galactic Bulges", Editors: Laurikainen
E., Peletier R., Gadotti D., Springer Publishing. 34 pages, 12 figure
Positive psychology of Malaysian students: impacts of engagement, motivation, self-compassion and wellbeing on mental health
Malaysia plays a key role in education of the Asia Pacific, expanding its scholarly output rapidly. However, mental health of Malaysian students is challenging, and their help-seeking is low because of stigma. This study explored the relationships between mental health and positive psychological constructs (academic engagement, motivation, self-compassion, and wellbeing), and evaluated the relative contribution of each positive psychological construct to mental health in Malaysian students. An opportunity sample of 153 students completed the measures regarding these constructs. Correlation, regression, and mediation analyses were conducted. Engagement, amotivation, self-compassion, and wellbeing were associated with, and predicted large variance in mental health. Self-compassion was the strongest independent predictor of mental health among all the positive psychological constructs. Findings can imply the strong links between mental health and positive psychology, especially selfcompassion. Moreover, intervention studies to examine the effects of self-compassion training on mental health of Malaysian students appear to be warranted.N/
Gas Accretion and Star Formation Rates
Cosmological numerical simulations of galaxy evolution show that accretion of
metal-poor gas from the cosmic web drives the star formation in galaxy disks.
Unfortunately, the observational support for this theoretical prediction is
still indirect, and modeling and analysis are required to identify hints as
actual signs of star-formation feeding from metal-poor gas accretion. Thus, a
meticulous interpretation of the observations is crucial, and this
observational review begins with a simple theoretical description of the
physical process and the key ingredients it involves, including the properties
of the accreted gas and of the star-formation that it induces. A number of
observations pointing out the connection between metal-poor gas accretion and
star-formation are analyzed, specifically, the short gas consumption time-scale
compared to the age of the stellar populations, the fundamental metallicity
relationship, the relationship between disk morphology and gas metallicity, the
existence of metallicity drops in starbursts of star-forming galaxies, the
so-called G dwarf problem, the existence of a minimum metallicity for the
star-forming gas in the local universe, the origin of the alpha-enhanced gas
forming stars in the local universe, the metallicity of the quiescent BCDs, and
the direct measurements of gas accretion onto galaxies. A final section
discusses intrinsic difficulties to obtain direct observational evidence, and
points out alternative observational pathways to further consolidate the
current ideas.Comment: Invited review to appear in Gas Accretion onto Galaxies, Astrophysics
and Space Science Library, eds. A. J. Fox & R. Dav\'e, to be published by
Springe
Gas Accretion and Galactic Chemical Evolution: Theory and Observations
This chapter reviews how galactic inflows influence galaxy metallicity. The
goal is to discuss predictions from theoretical models, but particular emphasis
is placed on the insights that result from using models to interpret
observations. Even as the classical G-dwarf problem endures in the latest round
of observational confirmation, a rich and tantalizing new phenomenology of
relationships between , , SFR, and gas fraction is emerging both in
observations and in theoretical models. A consensus interpretation is emerging
in which star-forming galaxies do most of their growing in a quiescent way that
balances gas inflows and gas processing, and metal dilution with enrichment.
Models that explicitly invoke this idea via equilibrium conditions can be used
to infer inflow rates from observations, while models that do not assume
equilibrium growth tend to recover it self-consistently. Mergers are an overall
subdominant mechanism for delivering fresh gas to galaxies, but they trigger
radial flows of previously-accreted gas that flatten radial gas-phase
metallicity gradients and temporarily suppress central metallicities. Radial
gradients are generically expected to be steep at early times and then
flattened by mergers and enriched inflows of recycled gas at late times.
However, further theoretical work is required in order to understand how to
interpret observations. Likewise, more observational work is needed in order to
understand how metallicity gradients evolve to high redshifts.Comment: Invited review to appear in Gas Accretion onto Galaxies, Astrophysics
and Space Science Library, eds. A. J. Fox & R. Dav\'e, to be published by
Springer. 29 pages, 2 figure
The stellar and sub-stellar IMF of simple and composite populations
The current knowledge on the stellar IMF is documented. It appears to become
top-heavy when the star-formation rate density surpasses about 0.1Msun/(yr
pc^3) on a pc scale and it may become increasingly bottom-heavy with increasing
metallicity and in increasingly massive early-type galaxies. It declines quite
steeply below about 0.07Msun with brown dwarfs (BDs) and very low mass stars
having their own IMF. The most massive star of mass mmax formed in an embedded
cluster with stellar mass Mecl correlates strongly with Mecl being a result of
gravitation-driven but resource-limited growth and fragmentation induced
starvation. There is no convincing evidence whatsoever that massive stars do
form in isolation. Various methods of discretising a stellar population are
introduced: optimal sampling leads to a mass distribution that perfectly
represents the exact form of the desired IMF and the mmax-to-Mecl relation,
while random sampling results in statistical variations of the shape of the
IMF. The observed mmax-to-Mecl correlation and the small spread of IMF
power-law indices together suggest that optimally sampling the IMF may be the
more realistic description of star formation than random sampling from a
universal IMF with a constant upper mass limit. Composite populations on galaxy
scales, which are formed from many pc scale star formation events, need to be
described by the integrated galactic IMF. This IGIMF varies systematically from
top-light to top-heavy in dependence of galaxy type and star formation rate,
with dramatic implications for theories of galaxy formation and evolution.Comment: 167 pages, 37 figures, 3 tables, published in Stellar Systems and
Galactic Structure, Vol.5, Springer. This revised version is consistent with
the published version and includes additional references and minor additions
to the text as well as a recomputed Table 1. ISBN 978-90-481-8817-
- …