383 research outputs found

    The role of gene elongation in the evolution of histidine biosynthetic genes

    Get PDF
    Gene elongation is a molecular mechanism consisting of an in-tandem duplication of a gene and divergence and fusion of the two copies, resulting in a gene constituted by two divergent paralogous modules. The aim of this work was to evaluate the importance of gene elongation in the evolution of histidine biosynthetic genes and to propose a possible evolutionary model for some of them. Concerning the genes hisA and hisF, which code for two homologous (β/α)8-barrels, it has been proposed that the two extant genes could be the result of a cascade of gene elongation/domain shuffling events starting from an ancestor gene coding for just one (β/α) module. A gene elongation event has also been proposed for the evolution of hisB and hisD; structural analyses revealed the possibility of an early elongation event, resulting in the repetition of modules. Furthermore, it is quite possible that the gene elongations responsible for the evolution of the four proteins occurred before the earliest phylogenetic divergence. In conclusion, gene elongation events seem to have played a crucial role in the evolution of the histidine biosynthetic pathway, and they may have shaped the structures of many genes during the first steps of their evolution

    Two-colour generation in a chirped seeded Free-Electron Laser

    Full text link
    We present the experimental demonstration of a method for generating two spectrally and temporally separated pulses by an externally seeded, single-pass free-electron laser operating in the extreme-ultraviolet spectral range. Our results, collected on the FERMI@Elettra facility and confirmed by numerical simulations, demonstrate the possibility of controlling both the spectral and temporal features of the generated pulses. A free-electron laser operated in this mode becomes a suitable light source for jitter-free, two-colour pump-probe experiments

    Deviations in influenza seasonality: odd coincidence or obscure consequence?

    Get PDF
    AbstractIn temperate regions, influenza typically arrives with the onset of colder weather. Seasonal waves travel over large spaces covering many climatic zones in a relatively short period of time. The precise mechanism for this striking seasonal pattern is still not well understood, and the interplay of factors that influence the spread of infection and the emergence of new strains is largely unknown. The study of influenza seasonality has been fraught with problems. One of these is the ever-shifting description of illness resulting from influenza and the use of both the historical definitions and new definitions based on actual isolation of the virus. The compilation of records describing influenza oscillations on a local and global scale is massive, but the value of these data is a function of the definitions used. In this review, we argue that observations of both seasonality and deviation from the expected pattern stem from the nature of this disease. Heterogeneity in seasonal patterns may arise from differences in the behaviour of specific strains, the emergence of a novel strain, or cross-protection from previously observed strains. Most likely, the seasonal patterns emerge from interactions of individual factors behaving as coupled resonators. We emphasize that both seasonality and deviations from it may merely be reflections of our inability to disentangle signal from noise, because of ambiguity in measurement and/or terminology. We conclude the review with suggestions for new promising and realistic directions with tangible consequences for the modelling of complex influenza dynamics in order to effectively control infection

    Effects of Parvovirus B19 In Vitro Infection on Monocytes from Patients with Systemic Sclerosis: Enhanced Inflammatory Pathways by Caspase-1 Activation and Cytokine Production

    Get PDF
    Parvovirus B19 (B19V) has been proposed as a triggering agent for some autoimmune diseases including systemic sclerosis (SSc). In this study, we investigated whether B19V infection in vitro differently activates inflammatory pathways, including those dependent on caspase-1 activation, in monocytes from patients with SSc and healthy controls. We showed that B19V can infect both THP-1 cells and primary monocytes but is not able to replicate in these cells. B19V infection increases the production of tumor necrosis factor-\u3b1 and induces NLRP3-mediated caspase-1 activation in both THP-1 cells differentiated with phorbol 12-myristate 13-acetate and in monocytes from patients with SSc but not from healthy controls. B19V infection was sufficient for THP-1 to produce mature IL-1\u3b2. Monocytes from patients with SSc required an additional stimulus, here represented by lipopolysaccharides, to activate cytokine genes. Following B19V infection, however, lipopolysaccharide-activated monocytes from patients with SSc strongly increased the production of IL-1\u3b2 and tumor necrosis factor-\u3b1. Altogether, these data suggest that viral components might potentiate the response to endogenous and/or exogenous toll-like receptor 4 ligands in monocytes from patients with SSc. The B19V-mediated activation of inflammatory pathways in monocytes might contribute to the disease progression and/or development of specific clinical phenotypes

    Implementation of Radio-Frequency Deflecting Devices for Comprehensive High-Energy Electron Beam Diagnosis

    Get PDF
    In next-generation light sources, high-brightness electron beams are used in a free-electron laser configuration to produce light for use by scientists and engineers in numerous fields of research. High-brightness beams are described for such light sources as having low transverse and longitudinal emittances, high peak currents, and low slice emittance and energy spread. The optimal generation and preservation of such high-brightness electron beams during the acceleration process and propagation to and through the photon-producing element is imperative to the quality and performance of the light source. To understand the electron beam's phase space in the accelerating section of a next-generation light source machine, we employed radio-frequency cavities operating in a deflecting mode in conjunction with a magnetic spectrometer and imaging system for both low (250 MeV) and high (1.2 GeV) electron energies. This high-resolution, high-energy system is an essential diagnostic for the optimization and control of the electron beam in the FERMI light source generating fully transversely and longitudinally coherent light in the VUV to soft x-ray wavelength regimes. This device is located at the end of the linear accelerator in order to provide the longitudinal phase space nearest to the entrance of the photon-producing beam-lines. Here, we describe the design, fabrication, characterization, commissioning, and operational implementation of this transverse deflecting cavity structure diagnostic system for the high-energy (1.2 GeV) regime

    HCV and HIV co-infection in pregnant women attending St. Camille Medical Centre in Ouagadougou (Burkina Faso

    Get PDF
    Five hundred and forty-seven pregnant women with less than 32 weeks of amenorrhoea, attending an antenatal clinic of St. Camille Medical Centre (SCMC) of Ouagadougou were enrolled for a hepatitis C virus (HCV) and HIV co-infection study. Fifty-eight (10.6%) were HIV positive and 18 (3.3%) were anti-HCV positive. Only seven pregnant women (i.e., 1.3%) had a documented HIV and HCV co-infection. HCV-RNA was found in 5 out of 18 (27.8%) patients, who had anti-HCV antibodies. The genotype analysis of these five patients showed that two were of 1b whereas three were of 2a genotype. Mother-to-infant transmission of the same HCV genotype (2a) was documented in only one case. High 1b prevalence has been reported in other parts of Africa, while 2a is the prevalent genotype (60%) in Burkina Faso. This genotype has a higher response rate to treatment. Serum transaminases were normal, also in presence of HCV-RNA. The higher than expected rate of co-infection in Burkina Faso seems to demonstrate a correlation between these two infections, which could influence the evolution of HIV and HCV diseases

    The effect of social media communication on consumer perceptions of brands

    Get PDF
    Researchers and brand managers have limited understanding of the effects social media communication has on how consumers perceive brands. We investigated 504 Facebook users in order to observe the impact of firm-created and user-generated social media communication on brand equity, brand attitude and purchase intention by using a standardized online survey throughout Poland. To test the conceptual model, we analyzed 60 brands across three different industries: non-alcoholic beverages, clothing and mobile network operators. When analyzing the data, we applied the structural equation modeling technique to both investigate the interplay of firm-created and user-generated social media communication and examine industry-specific differences. The results of the empirical studies showed that user-generated social media communication had a positive influence on both brand equity and brand attitude, whereas firm-created social media communication affected only brand attitude. Both brand equity and brand attitude were shown to have a positive influence on purchase intention. In addition, we assessed measurement invariance using a multi-group structural modeling equation. The findings revealed that the proposed measurement model was invariant across the researched industries. However, structural path differences were detected across the models

    9q34.3 microduplications lead to neurodevelopmental disorders through EHMT1 overexpression

    Get PDF
    Both copy number losses and gains occur within subtelomeric 9q34 region without common breakpoints. The microdeletions cause Kleefstra syndrome (KS), whose responsible gene is EHMT1. A 9q34 duplication syndrome (9q34 DS) had been reported in literature, but it has never been characterized by a detailed molecular analysis of the gene content and endpoints. To the best of our knowledge, we report on the first patient carrying the smallest 9q34.3 duplication containing EHMT1 as the only relevant gene. We compared him with 21 reported patients described here as carrying 9q34.3 duplications encompassing the entire gene and extending within ~\u20093 Mb. By surveying the available clinical and molecular cytogenetic data, we were able to discover that similar neurodevelopmental disorders (NDDs) were shared by patient carriers of even very differently sized duplications. Moreover, some facial features of the 9q34 DS were more represented than those of KS. However, an accurate in silico analysis of the genes mapped in all the duplications allowed us to support EHMT1 as being sufficient to cause a NDD phenotype. Wider patient cohorts are needed to ascertain whether the rearrangements have full causative role or simply confer the susceptibility to NDDs and possibly to identify the cognitive and behavioral profile associated with the increased dosage of EHMT1
    corecore