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Abstract

In temperate regions, influenza typically arrives with the onset of colder weather. Seasonal waves travel over large spaces covering many

climatic zones in a relatively short period of time. The precise mechanism for this striking seasonal pattern is still not well understood,

and the interplay of factors that influence the spread of infection and the emergence of new strains is largely unknown. The study of influ-

enza seasonality has been fraught with problems. One of these is the ever-shifting description of illness resulting from influenza and the

use of both the historical definitions and new definitions based on actual isolation of the virus. The compilation of records describing influ-

enza oscillations on a local and global scale is massive, but the value of these data is a function of the definitions used. In this review, we

argue that observations of both seasonality and deviation from the expected pattern stem from the nature of this disease. Heterogeneity

in seasonal patterns may arise from differences in the behaviour of specific strains, the emergence of a novel strain, or cross-protection

from previously observed strains. Most likely, the seasonal patterns emerge from interactions of individual factors behaving as coupled res-

onators. We emphasize that both seasonality and deviations from it may merely be reflections of our inability to disentangle signal from

noise, because of ambiguity in measurement and/or terminology. We conclude the review with suggestions for new promising and realistic

directions with tangible consequences for the modelling of complex influenza dynamics in order to effectively control infection.
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Introduction

Influenza is a disease of global concern, with significant levels

of morbidity and mortality, that exhibits both regular sea-

sonal occurrence worldwide and infrequent but devastating

pandemics. Research interest in elucidating factors contribut-

ing to seasonality is driven both by the desire to understand

and explain normal transmission patterns, and also by the

conviction that understanding of normal occurrence will

provide insights into how outbreaks (local epidemic and/or

globally pandemic) occur. This will then allow appropriate

resource allocation and will support efforts to mitigate out-

breaks. The mechanisms driving influenza seasonality are

thought to be related to a number of environmental, agent-

specific and host-specific factors. The exact contribution of

these factors to seasonality is still largely unknown [1–6]. It

is likely that an as yet undiscovered interplay among host,

pathogen and environmental factors leads to increased virus

transmissibility and infectivity. Great advances have been
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made in the field of influenza research. Two particular exam-

ples are the use of antigenic cartography for vaccine strain

selection [7,8], and the use of advanced whole genome

sequence analysis to understand the diversity of the influenza

viruses within and across geographically discrete outbreaks

[9–11]. The above techniques, along with the ability to per-

form advanced mathematical modelling informed by surveil-

lance data, provide us with an unprecedented repertoire of

tools that can be used for infectious disease forecasting

[4,12–14]. Despite these advances, large lacunae exist in the

understanding of the processes that lead to the observed

seasonal disease dynamics.

In temperate climates, influenza typically arrives with the

onset of cold weather, but occasionally breaks out of its

expected seasonal pattern. An unusual time of arrival of the

last large-scale outbreak of 2009 and a similar occurrence

for the pandemic of 1918 triggered an interest in the rules

and role of deviations from the expected. A large body of lit-

erature comments that, whereas influenza exhibits strong

seasonality, the timing, magnitude and individual characteris-

tics of influenza epidemics change from year to year, place

to place, and population to population [6,15–20]. To some

extent, heterogeneity in influenza seasonality reflects the nat-

ure of the processes of spread, transmission and manifesta-

tion of infection. In this review, we argue that our ability to

measure and characterize these processes contributes to

true and perceived heterogeneity.

In measuring and characterizing influenza seasonality, meth-

odology that is prone to substantial measurement error pro-

duces uncertainty and bias. Research publications and

textbooks lack a clear and robust definition of seasonality and

the methodology (ranging from determining monthly counts

to results of harmonic regression) for assessing seasonality.

Further complicating the analysis of seasonal factors is the

failure to present findings in a uniform manner and ever-

evolving terminology and case definitions for influenza. Finally,

investigation into the possibility of multiple mechanisms, aim-

ing to produce observed outcomes, has been restricted to, at

most, one or two potential drivers of an admittedly highly

complex system. In this review, we focus on three aspects of

influenza seasonality, which are critical to any discussion of

causal drivers of deviation from seasonal patterns, regardless

of the mechanisms by which those seasonal patterns originally

emerged: (i) systematic and normalized approaches for

depicting disease incidence with existing tools and measure-

ments; (ii) the need for a consistent and appropriate termi-

nology related to influenza; and (iii) a framework for

understanding the full complexity of seasonal oscillations in

spatio-temporal dynamics. This framework will help to refine

and clarify future hypothesis-driven research questions.

Perceived Deviations: Heterogeneity of

Seasonal Patterns

We define seasonality in disease occurrence as a temporal

pattern of systematic periodic oscillation within a predeter-

mined cycle that can be characterized by peak timing, ampli-

tude, and duration (Fig. 1). In general, the cycle might range

from months to a few years; however, for simplicity in this

review, we refer to an annual cycle, the most common time

period. Quantification of seasonal intensity is based on pro-

viding a magnitude of change from a nadir or pre-outbreak

level to a seasonal peak. Timing of outbreaks is another

important characteristic of seasonality. This concept includes

the following aspects of outbreak time referencing: time of

an outbreak onset, time when an outbreak reaches its maxi-

mum, time from the onset or from the peak to its end, or a

return to a background or pre-outbreak level (Fig. 1).

Together with the magnitude, these time-related characteris-

tics form a unique outbreak signature. Heterogeneity in sea-

sonality is manifested by variability in peak timing, amplitude,

and duration. Seasonality can vary by location, population at

risk, time period, and the type of health outcome measure-

ment. We postulate that the seasonal oscillation in influenza

occurrence is, in fact, a property of a natural process gov-

erned by various mechanisms with different manifestations in

a given population.

The variability in these three characteristics is illustrated

in a series of maps displaying age-adjusted weekly rates of
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FIG. 1. Seasonal curve and seasonality characteristics. The seasonal

curve depicts a temporal pattern of disease occurrence within an

annual cycle. Seasonality can be characterized by peak timing, ampli-

tude, and duration. The time when a seasonal curve reaches its max-

imum, and duration, defined as the time between an outbreak onset

and the time when a curve returns to a background or pre-outbreak

level, are shown. Seasonal intensity refers to a magnitude of change

from a nadir or pre-outbreak level to a seasonal peak.
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influenza-related hospitalization at the county level for four

individual seasons (Video Clip S1). These dynamic maps

depict the spatio-temporal distribution of hospitalizations

resulting from influenza with respect to weekly averages of

minimum ambient temperature; illustrate hospitalizations

among patients aged 65 years and older; and demonstrate

the emergence of travelling waves of influenza as the ambient

temperature drops and allow the visualization of the spread

or percolation of infection to adjacent areas, depending on a

spatial distribution of environmental and socio-economic fac-

tors relevant to the population. For each presented season,

variability was observed in the starting location, the duration,

and the pattern of spread of seasonal outbreaks.

The magnitude of seasonal increase is the most commonly

reported parameter of influenza seasonality. In a representa-

tive example, the rates of influenza-related hospitalization in

the 1999–2000 season were substantially higher than in

other years, as shown by the intensity of local clusters and

global spread. However, within a single season, the magni-

tude may dramatically vary by age even within a seemingly

homogeneous age group. For instance, among people aged

65 years and older, the oldest category exhibited the highest

rate of hospitalization (Fig. S1). Considerable heterogeneity

in the spread and seasonal magnitude of seasonal influenza

has been documented in populations of high vulnerability (i.e.

at high risk for exposure to influenza or severe health out-

comes) [21,22]. Although the magnitude of the seasonal

increase in influenza morbidity and mortality in a specific

population might reflect the behaviour in the general popula-

tion, a simple comparison of seasonal magnitudes across the

various groups has to be attempted with caution. Further-

more, inferences from observed differences in the seasonal

intensities have to be considered carefully, owing to potential

diversity in causal underlying mechanisms. For example, the

risk factors implicated in spatio-temporal patterns for chil-

dren, young adults or adults with young children might have

low or even no relevance to the patterns of hospitalization

resulting from influenza among the elderly. The same logic

applies to the comparison of seasonal peaks across regions

and locations. Approaches to quantification of the seasonal

magnitude also vary, ranging from providing the highest value

of an outcome of interest (incidence rates, percentahe of

positive test results, number of cases, etc.) observed over a

time period of incidence to an estimated trough-to-peak

ratio [23]. Measures of magnitude include excess mortality

values [4], relative and absolute intensity [20], or their

proxies.

The characterization and reporting of the peak timing in

influenza are improving. Not only is the month with the high-

est number of cases consistently provided in the literature,

but so is information on the range in timing of the regional

peaks [24]. It has been shown that both the seasonal peak

timing [20] and the time taken to reach the peak and base-

line levels [24] can vary locally and regionally. It has been

well documented that influenza A often precedes influenza B

[25], indicating potential heterogeneity in seasonal peak tim-

ing associated with strain diversity. Peak timing and seasonal

magnitude can be correlated: earlier outbreaks have higher

intensity [20], which can be linked to antigenic drift [26].

The dynamic maps provide insights into the time elapsing

from the onset to the end of a seasonal outbreak, which

may take 4–7 weeks [20]. The geo-referenced sequence of

seasonal peaks forms travelling waves of influenza, and allows

us to characterize a global pattern of transmission [27–30].

It has been shown that there is a remarkable degree of

synchronization of influenza outbreaks at a regional level

[20,31–33] as well as between countries [24,34] in temper-

ate climates. Investigators relate synchronization to globaliza-

tion [35,36], social mixing patterns [37], and transportation

networks [30,38]. However, it is noteworthy that synchroni-

zation in the tropics is not extensively documented, in spite

of high population densities and high connectivity between

regions. In larger countries such as China, Brazil, and India, a

certain degree of synchronization is seen for regions that

have similar climatic conditions [15,39,40].

Synchronization of influenza seasonality with environmen-

tal parameters has the potential to allow an integrated fore-

cast of infection on a local and global scale. The link of

influenza with low ambient temperature favouring survival of

aerosol viruses [41] and indoor crowding [42] might be

implicated in a southward trend in the occurrence of

increased hospitalizations early in the season (September–

October) in the Midwest and South of the USA. Another

easily distinguishable wave of outbreaks from the northwest

to the southeast, corresponding to decrease in temperature,

was observed in Texas and Oklahoma in late October

through November, with the frequent appearance of clusters

at temperature gradient fronts. In both the Atlantic and Paci-

fic coastal regions, influenza hospitalizations peaked, on aver-

age, almost 6 days later than in the central region (between

)80� and )100� longitude): 4.9 weeks vs. 5.6 weeks [20].

This suggests that, in general, on a large spatial scale, travel-

ling waves of influenza move from southwest to northeast.

However, as illustrated by the dynamic maps, even within a

single influenza season, it is possible to trace multiple origins

contributing to the overall seasonal curve.

A seasonal pattern observed globally is not necessarily a

simple sum of patterns observed locally [43]. Although

annual epidemics typically begin abruptly, peak within 2–

3 weeks and last from 5 to 10 weeks in the continental USA
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[20], their local behavior might exhibit unusual clusters that

percolate during an influenza season. In the presented exam-

ple, one of the most striking observations is the presence of

clusters of high influenza incidence that occurred early in the

autumn of 1999, were maintained throughout the influenza

season, and were among the last remaining at the end of the

influenza season (Fig. S1). A potential reason for isolated

percolations and for a global seasonal pattern is likely to be

related to characteristics of circulating strains that were

dominated in the past and were re-occurring in a given sea-

son [44].

A depiction of a typical seasonal pattern or a departure

from it requires spatially explicit time-series modelling, which

usually entails the selection or specification of a time period

and geographical area. In locations with relatively small popu-

lations, an aggregation of data into ‘meaningfully large’ num-

bers leads to reporting of monthly or even quarterly cases

of influenza that severely weakens the quality of analysis. The

use of fine time units—days and weeks—allows the detec-

tion of seasonal patterns with high resolution; however, it

often requires an aggregation over a large, often heteroge-

neous, geographical area, and may conceal an isolated pat-

tern. A departure from what is ‘typically’ observed on a

large geographical scale needs to be better characterized

with respect to local diversity of circulating strains, and the

criteria for a proper comparison should be grounded on

what we can measure reliably with a sufficient degree of

reproducibility, precision and accuracy for the intended pur-

poses and goals.

Influenza: the New Tower of Babel or the

source for Obscure Observation?

The paradigm of seasonality and the heterogeneity in pat-

terns observed can originate from the process itself or from

our ability to detect and measure seasonality. The lack of

sound science-based definitions and reliable data, and limited

methods for presenting data and assessing statistical signifi-

cance in temporal oscillations, can obscure the true seasonal

pattern.

Influenza is an ancient term; it lacked a firm meaning from

the start, and the meaning became even more convoluted as

time progressed. The term has long been in clinical and pub-

lic health use, and pre-dated the discovery of the true cause

of the disease in 1933. Influenza has also long been used as a

blanket term to refer to and be synonymous with respira-

tory illness—conflation with the common cold. In both the

epidemiological and medical realms, the term ‘influenza’ is

used restrictively in some cases, referring only to the disease

caused by the influenza virus as confirmed by laboratory

tests. At the other end of the precision scale, influenza

refers to a collection of signs and symptoms, which are

themselves not clearly defined—and perhaps cannot be

defined with any degree of clarity [45–49] (http://

www.who.int/classifications/icd/en/). The routine use of such

a wide range of case definitions undoubtedly leads to sub-

stantial noise in the observed temporal patterns, may pro-

duce false alarms, or may result in a failure to recognize an

unusual departure from a seasonal curve.

On the basis of the clinical progression of the disease, we

expect that mild cases will appear first in a community, with

a subsequent rise in outpatient visits, an increase in hospital-

izations, and then deaths, according to a pyramidal structure

(Fig. 2). However, the rapid onset of influenza, high infectiv-

ity and heterogeneous herd immunity [50] might obscure

this temporal pattern. Furthermore, an event attracting high

media attention might distort an otherwise smooth seasonal

curve by a disproportionally high sudden rise or spike in

tracked records if the case definition is prone to such fluctu-

ations. With the increase in digital tools for tracking influ-

enza cases over the internet and social media, vague

definitions of influenza are currently at the core of temporal

trends [51]. These new technologies pursue the noble goal

of providing an early warning for influenza arrival, and their

credibility depends on the quality of tracked responses and

the ability to separate signal from noise. With regard to

ongoing attempts to actively use text mining in large volumes

of medical records, the signal-to-noise ratio is the most

important consideration in understanding the departure from

an expected pattern. Until definitions and the approaches to

consider various terms in data mining and text search

engines are clarified, the temporal oscillations produced by

massive text-mining algorithms might be severely obscured,

and the similarities or differences in the detected patterns

could be purely coincidental.

‘Influenza-like illness’ is currently recognized as the cor-

nerstone of syndromic surveillance, and is most often used

to refer to persons with signs and/or symptoms that are

commonly the result of influenza virus infection. Compari-

sons of seasonal patterns derived from syndromic surveil-

lance should be made with caution, as the case definition

may change over time and vary from country to country and

season by season, as the set of symptoms may change. A

reliable surveillance system that produces systematically eval-

uated laboratory-confirmed cases with reasonable spatial

granularity and sufficient level of detail on demographic com-

position and molecular characterization is key for a compre-

hensive depiction of influenza seasonality. Geo-referenced

data that are uniformly collected and updated on a weekly
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basis can serve as an indicator of the level of influenza activ-

ity for the whole country. The prime example of established

influenza monitoring comes from a number of national sys-

tems, where elaborate sentinel surveillance is combined with

extensive laboratory characterization [33,34,52–54]. The

establishment of surveillance systems in countries with tropi-

cal climates enables the depiction of seasonal trends in

locations where historically data were very limited. One

example of a tropical city with a good surveillance system is

Hong Kong, where the burden of hospitalization can be com-

pared with that of the USA, and a distinct pattern of season-

ality exists [44,55,56]. The compilation, validation and

retention of certain minimum demographic (e.g. age, gender,

and location) and clinical (e.g. disease severity and outcome)

information in publicly reported surveillance data are likely

to increase the utilization and usefulness of monitoring

efforts in the assessment of influenza seasonality.

Hospitalization and medical claims records offer a unique

systematic approach to depicting seasonal patterns, which

are likely to be different from those observed via surveil-

lance, owing to a shift to a population that is likely to be

more susceptible or disease-prone, such as children, the

elderly, and people with underlying medical conditions

(Fig. S2). Although weekly pneumonia-associated and influ-

enza-associated hospitalizations have been used as a reliable

indicator of influenza morbidity, it is likely that the seasonali-

ty, specifically the peak timing, depicted by the hospitalization

claims contains substantial delays. Imprecision of clinical diag-

nosis may add to the noise in this seasonal pattern.

Because of the various notions associated with influenza,

the attempt to be more precise has gone in the direction of

adding more words to qualify the terms. The types of

restriction added include geographical designations, designa-

tions related to time of year, and geography, in addition to
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FIG. 2. Pyramidal structure of disease burden with respect to severity. As the severity of influenza infection progresses from asymptomatic to

mild to severe, the number of cases decreases proportionally (a). In a population with high herd immunity, the majority of asymptomatic cases

may be unnoticed (b). In vulnerable populations, the proportion of patients with severe outcomes might be very large, even though they make a

relatively small contribution to the overall burden (c). On the basis of the clinical progression of influenza, we expect that outpatient visits for

mild cases will peak first, severe cases requiring hospitalization and specialized medical care will peak next, and cases resulting in death will peak

last (d).
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an assortment of other types of limit added to the central

term. It is useful to disentangle various adjectival categories,

and to ask whether the added words provide greater preci-

sion or merely complicate the fuzziness of the language. ‘Pan-

demic flu’ is often intended to mean a ‘highly virulent’

disease that leaves in its wake an excess in mortality

throughout the world, whereas ‘epidemic influenza’ may

denote a more localized viral infection, with perhaps a lower

number of deaths. Some epidemics carry an adjective that

identifies some aspect of the virus, such as ‘swine’ or ‘avian’

flu, based on the animal reservoir from which the strains

may have originated. Are these simplifications intended for a

lay audience or merely a reflection of sloppy language use?

The term ‘seasonal’ is used in an attempt to loosely specify

influenza with characteristics that are somewhat expected,

or at least is not ‘epidemic’ or ‘pandemic.’ Does seasonal

influenza stem from seasonal requests for testing, at least in

part? Is un-seasonal flu a departure from an expected course,

meaning that it should serve as an alarm? These questions

need to be answered.

Coupled Resonators to Study Deviations of

Seasonality

Many researchers have proposed isolated potential mechanis-

tic drivers of seasonal/periodic fluctuations in influenza

[57,58]. Such studies investigate local patterns within years

independently of a broader temporal context, or focus on

long-term patterns in which variation among individual years

is averaged in favour of understanding emerging trends.

There is, however, a different type of hypothesis with which

to describe the mechanism by which ‘deviations’ from

expected oscillations might arise: coupled resonators. Build-

ing on ideas from physics initially proposed in the 1600s, this

hypothesis proposes that many different mechanisms may

each contribute an oscillatory driver of influenza dynamics,

but that the differences in strength, timing and the potential

amplifying and damping effects that they have on each other

may lead to quasi-chaotic local behaviour in an otherwise

globally periodic system. (In the language of modern physics,

this involves the study of coherence and resonance in loosely

coupled oscillators [59]). Engineers and physicists have

already developed an incredibly useful theory with which to

describe the necessary and sufficient conditions for coher-

ence and resonance behaviours in such systems, including

incorporation of the impact of stochasticity and time delay,

making their results not only relevant, but directly analogous

to proposed drivers of disease dynamics [60]. This idea is

not entirely new to the study of seasonal influenza, but has

thus far been confined to studying multiple effects of single,

or small sets of, mechanistic drivers of oscillation [23]. These

insights have been extremely valuable, but have not yet real-

ized their full potential as a unifying principle from which plu-

ral-mechanistic hypotheses may be considered.

Importantly, we do not mean to suggest that the correct

choice of action for current research would be to compose

a model of ‘everything but the kitchen sink’, tuning the inter-

actions until observed patterns that include global periodicity

with deviations of the observed type emerge. Although that

would be possible, it would be practically meaningless. We

believe that the focus of these efforts should shift away from

trying to demonstrate which mechanisms may be strong

enough to be primary drivers of global patterns, and instead

begin to focus on how different mechanisms affect each

other (starting with pairwise interactions, but then also

explicitly scaling up experimentally to discover potential

three-way and higher-order interactions). Only after this

empirical groundwork has begun can models begin to

explore at what level these interactions may be appropriate

for inclusion in an all-explaining paradigm of seasonality.

From this perspective, observations that are currently

believed to be deviations from seasonal patterns may actually

be the result of a sufficiently complex system of loosely cou-

pled oscillators that, in fact, reveal such seeming anomalies

as logical necessities in the global pattern of disease inci-

dence.

Conclusions

In temperate climates, seasonal influenza arrives in late

autumn to early winter, and dissipates in spring. In the tro-

pics, annual fluctuations are more complex, and are linked to

water content in the air, rather than to the ambient temper-

ature cycle. On a relatively global scale, annual epidemics

begin abruptly, peak within 2–3 weeks, and last for 5–

10 weeks. Seasonal waves travel over large spaces, covering

many climatic zones in a relatively short period of time. The

precise mechanisms governing the peak timing, amplitude,

shape and duration of seasonal waves are unknown. The

relationships between host susceptibility, the emergence of

new strains and their genetic variability, factors that influence

the spread of infections and characteristics of seasonality are

not well understood. This area of research is extremely

promising, and is already showing substantial promise. To

ensure success, we need to shape the meanings and refer-

ents of terms, and develop the models to correspond as clo-

sely as possible with what we know—and, equally important,

with what we do not know. Furthermore, for monitoring
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purposes and the determination of endemic levels of disease,

so that we can accurately read the warning signs in nature,

the use of precise terms and the development of novel crea-

tive approaches for depicting seasonal patterns and depar-

tures from the expected are critical directions of research.

The development of uniformly implemented rigorous defini-

tions will form the basis for understanding whether our

observations are, in fact, measurements of a biologically fluc-

tuating system, or actually logical necessities of a steady, but

stochastic, natural state.
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