211 research outputs found

    Detection of Keplerian dynamics in a disk around the post-AGB star AC Her

    Full text link
    So far, only one rotating disk has been clearly identified and studied in AGB or post-AGB objects (in the Red Rectangle), by means of observations with high spectral and spatial resolution. However, disks are thought to play a key role in the late stellar evolution and are suspected to surround many evolved stars. We aim to extend our knowledge on these structures. We present interferometric observations of CO J=2-1 emission from the nebula surrounding the post-AGB star AC Her, a source belonging to a class of objects that share properties with the Red Rectangle and show hints of Keplerian disks. We clearly detect the Keplerian dynamics of a second disk orbiting an evolved star. Its main properties (size, temperature, central mass) are derived from direct interpretation of the data and model fitting. With this we confirm that there are disks orbiting the stars of this relatively wide class of post-AGB objectsComment: 4 pages, 3 figure

    Extended rotating disks around post-AGB stars

    Full text link
    There is a group of binary post-AGB stars that show a conspicuous NIR excess, usually assumed to arise from hot dust in very compact possibly rotating disks. These stars are surrounded by significantly fainter nebulae than the "standard", well studied protoplanetary and planetary nebulae (PPNe, PNe). We present high-sensitivity mm-wave observations of CO lines in 24 objects of this type. CO emission is detected in most observed sources and the line profiles show that the emissions very probably come from disks in rotation. We derive typical values of the disk mass between 1e-3 and 1e-2 Mo, about two orders of magnitude smaller than the (total) masses of "standard" PPNe. The high-detection rate (upper limits being in fact not very significant) clearly confirm that the NIR excess of these stars arises from compact disks in rotation, very probably the inner parts of those found here. Low-velocity outflows are also found in about eight objects, with moderate expansion velocities of ~ 10 km/s, to be compared with the velocities of about 100 km/s often found in "standard" PPNe. Except for two sources with complex profiles, the outflowing gas in our objects represents a minor nebular component. Our simple estimates of the disk typical sizes yields values ~ 0.5 - 1 arcsec, i.e. between 5e15 and 3e16 cm. Estimates of the linear momenta carried by the outflows, which can only be performed in a few well studied objects, also yield moderate values, compared with the linear momenta that can be released by the stellar radiation pressure (contrary, again, to the case of the very massive and fast bipolar outflows in "standard" PPNe, that are strongly overluminous). The mass and dynamics of nebulae around various classes of post-AGB stars differ very significantly, and we can expect the formation of PNe with very different properties.Comment: 19 pages, 26 figure

    Interferometric observations of SiO thermal emission in the inner wind of M-type AGB stars IK Tauri and IRC+10011

    Full text link
    Context. AGB stars go through a process of strong mass-loss that involves pulsations of the atmosphere, which extends to a region where the conditions are adequate for dust grains to form. Radiation pressure acts on these grains which, coupled to the gas, drive a massive outflow. The details of this process are not clear, including which molecules are involved in the condensation of dust grains. Aims. To study the role of the SiO molecule in the process of dust formation and mass-loss in M-type AGB stars. Methods. Using the IRAM NOEMA interferometer we observed the 28^{28}SiO and 29^{29}SiO J=3−2J=3-2, v=0v=0 emission from the inner circumstellar envelope of the evolved stars IK Tau and IRC+10011. We computed azimuthally averaged emission profiles to compare the observations to models using a molecular excitation and ray-tracing code for SiO thermal emission. Results. We observed circular symmetry in the emission distribution. We also found that the source diameter varies only marginally with radial velocity, which is not the expected behavior for envelopes expanding at an almost constant velocity. The adopted density, velocity, and abundance laws, together with the mass-loss rate, which best fit the observations, give us information on the chemical behavior of the SiO molecule and its role in the dust formation process. Conclusions. The results indicate that there is a strong coupling between the depletion of gas phase SiO and gas acceleration in the inner envelope. This could be explained by the condensation of SiO into dust grains

    Two short mass-loss events that unveil the binary heart of Minkowski's Butterfly Nebula

    Full text link
    Studying the appearance and properties of bipolar winds is critical to understand the stellar evolution from the AGB to the planetary nebula (PN) phase. Many uncertainties exist regarding the presence and role of binary stellar systems, mainly due to the deficit of conclusive observational evidences. We investigate the extended equatorial distribution around the early bipolar planetary nebula M 2-9 ("Minkowski's Butterfly Nebula") to gather new information on the mechanism of the axial ejections. Interferometric millimeter observations of molecular emission provide the most comprehensive view of the equatorial mass distribution and kinematics in early PNe. Here we present subarcsecond angular-resolution observations of the 12CO J=2-1 line and continuum emission with the Plateau de Bure interferometer. The data reveal two ring-shaped and eccentric structures at the equatorial basis of the two coaxial optical lobes. The two rings were formed during short mass-loss episodes (~ 40 yr), separated by ~ 500 yr. Their positional and dynamical imprints provide evidence of the presence of a binary stellar system at the center, which yields critical information on its orbital characteristics, including a mass estimate for the secondary of ~< 0.2 \ms. The presence of a stellar system with a modest-mass companion at the center of such an elongated bipolar PN strongly supports the binary-based models, because these are more easily able to explain the frequent axisymmetric ejections in PNe.Comment: 8 page

    The chemical composition of the circumstellar envelopes around yellow hypergiant stars

    Full text link
    The yellow hypergiant stars (YHGs) are extremely luminous and massive objects whose general properties are poorly known. Only two of this kind of star show massive circumstellar envelopes, IRC+10420 and AFGL2343. We aim to study the chemistry of the circumstellar envelopes around these two sources, by comparison with well known AGB stars and protoplanetary nebulae. We also estimate the abundances of the observed molecular species. We have performed single-dish observations of different transitions for twelve molecular species. We have compared the ratio of the intensities of the molecular transitions and of the estimated abundances in AFGL2343 and IRC+10420 with those in O-rich and C-rich AGB stars and protoplanetary nebulae. Both YHGs, AFGL2343, and IRC+10420, have been found to have an O-rich chemistry similar to that in O-rich AGB stars, though for AFGL2343 the emission of most molecules compared with 13CO lines is relatively weak. Clear differences with the other evolved sources appear when we compare the line intensity corrected for distance and the profile widths which are, respectively, very intense and very wide in YHGs. The abundances obtained for IRC+10420 agree with those found in AGB stars, but in general those found in AFGL2343, except for 13CO, are too low. This apparently low molecular abundance in AFGL2343 could be due to the fact that these molecules are present only in an inner region of the shell where the mass is relatively low.Comment: 14 pages, 12 figure

    A disk inside the bipolar planetary nebula M2-9

    Full text link
    Bipolarity in proto-planetary and planetary nebulae is associated with events occurring in or around their cores. Past infrared observations have revealed the presence of dusty structures around the cores, many in the form of disks. Characterising those dusty disks provides invaluable constraints on the physical processes that govern the final mass expulsion of intermediate-mass stars. We focus this study on the famous M2-9 bipolar nebula, where the moving lighthouse beam pattern indicates the presence of a wide binary. The compact and dense dusty core in the center of the nebula can be studied by means of optical interferometry. M2-9 was observed with VLTI/MIDI at 39-47 m baselines with the UT2-UT3 and UT3-UT4 baseline configurations. These observations are interpreted using a dust radiative transfer Monte Carlo code. A disk-like structure is detected perpendicular to the lobes and a good fit is found with a stratified disk model composed of amorphous silicates. The disk is compact, 25×\times35 mas at 8μm\rm \mu m, and 37×\times46 mas at 13μm\rm \mu m. For the adopted distance of 1.2 kpc, the inner rim of the disk is ∼\sim15 AU. The mass represents a few percent of the mass found in the lobes. The compactness of the disk puts strong constraints on the binary content of the system, given an estimated orbital period 90-120yr. We derive masses of the binary components between 0.6--1.0M_{\sun} for a white dwarf and 0.6--1.4M_{\sun} for an evolved star. We present different scenarios on the geometric structure of the disk accounting for the interactions of the binary system, which includes an accretion disk as well.Comment: 9 figures, A&A accepte

    Further ALMA observations and detailed modeling of the Red Rectangle

    Full text link
    We present new high-quality ALMA observations of the Red Rectangle (a well known post-AGB object) in C17O J=6-5 and H13CN J=4-3 line emission and results from a new reduction of already published 13CO J=3-2 data. A detailed model fitting of all the molecular line data, including previous maps and single-dish spectra, was performed using a sophisticated code. These observations and the corresponding modeling allowed us to deepen the analysis of the nebular properties. We also stress the uncertainties in the model fitting. We confirm the presence of a rotating equatorial disk and an outflow, which is mainly formed of gas leaving the disk. The mass of the disk is ~ 0.01 Mo, and that of the CO-rich outflow is ~ 10 times smaller. High temperatures of ~ 100 K are derived for most components. From comparison of the mass values, we roughly estimate the lifetime of the rotating disk, which is found to be of about 10000 yr. Taking data of a few other post-AGB composite nebulae into account, we find that the lifetimes of disks around post-AGB stars typically range between 5000 and more than 20000 yr. The angular momentum of the disk is found to be high, ~ 9 Mo AU km/s, which is comparable to that of the stellar system at present. Our observations of H13CN show a particularly wide velocity dispersion and indicate that this molecule is only abundant in the inner Keplerian disk, at ~ 60 AU from the stellar system. We suggest that HCN is formed in a dense photodissociation region (PDR) due to the UV excess known to be produced by the stellar system, following chemical mechanisms that are well established for interstellar medium PDRs and disks orbiting young stars. We further suggest that this UV excess could lead to the efficient formation and excitation of PAHs and other C-bearing macromolecules, whose emission is very intense in the optical counterpart.Comment: Astronomy & Astrohysics, in press; 17 pages, 18 figures, 1 tabl

    Arcsecond-resolution 12CO mapping of the yellow hypergiants IRC +10420 and AFGL 2343

    Get PDF
    IRC +10420 and AFGL 2343 are the unique, known yellow hypergiants (YHGs) presenting a heavy circumstellar envelope (CSE). We aim to study the morphology, exceptional kinematics, and excitation conditions of their CSEs, and the implications for mass-loss processes. We have mapped the 12CO J=2-1 and 1-0 emission in these YHGs with the IRAM Plateau de Bure interferometer and the 30m telescope. We developed LVG models in order to analyze their circumstellar characteristics. The maps show that the overall shape of both CSEs is approximately spherical, although they also reveal several aspherical features. The CSE around IRC +10420 shows a rounded extended halo surrounding a bright inner region, with both components presenting aspherical characteristics. It presents a brightness minimum at the center. The envelope around AFGL 2343 is a detached shell, showing spherical symmetry and clumpiness at a level of about 15% of the maximum brightness. The envelopes expand isotropically at about 35 km/s, about two or three times faster than typical CSEs around AGB stars. High temperatures (~ 200 K) are derived for the innermost regions in IRC +10420, while denser and cooler (~ 30 K) gas is found in AFGL 2343. The mass-loss processes in these YHGs have been found to be similar. The deduced mass-loss rates (~ 10E-4 - 10E-3 Msun/yr) are much higher than those obtained in AGB stars, and they present significant variations on time scales of ~ 1000 yr
    • …
    corecore