12 research outputs found

    Modelling paralytic shellfish toxins (PST) accumulation in Crassostrea gigas by using Dynamic Energy Budgets (DEB)

    Get PDF
    As other filter-feeders, Crassostrea gigas can concentrate paralytic shellfish toxins (PST) by consuming dinoflagellate phytoplankton species like Alexandrium minutum. Intake of PST in oyster tissues mainly results from feeding processes, i.e. clearance rate, pre-ingestive sorting and ingestion that are directly influenced by environmental conditions (trophic sources, temperature). This study aimed to develop a mechanistic model coupling the kinetics of PST accumulation and bioenergetics in C. gigas based on Dynamic Energy Budget (DEB) theory. For the first time, the Synthesizing Units (SU) concept was applied to formalize the feeding preference of oysters between non-toxic and toxic microalgae. Toxin intake and accumulation were both dependent on the physiological status of oysters. The accumulation was modelled through the dynamics of two toxin compartments: (1) a compartment of ingested but non-assimilated toxins, with labile toxins within the digestive gland eliminated via faeces production; (2) a compartment of assimilated toxins with a rapid detoxification rate (within a few days). Firstly, the DEB-PST model was calibrated using data from two laboratory experiments where oysters have been exposed to A. minutum. Secondly, it was validated using data from another laboratory experiment and from three field surveys carried out in the Bay of Brest (France) from 2012 to 2014. To account for the variability in PST content of A. minutum cells, the saxitoxin (STX) amount per energy units in a toxic algae (ρPST) was adjusted for each dataset. Additionally, the effects of PST on the oyster bioenergetics were calibrated during the first laboratory experiment. However, these effects were shown to depend on the strain of A. minutum. Results of this study could be of great importance for monitoring agencies and decision makers to identify risky conditions (e.g. production areas, seawater temperature), to properly assess detoxification step (e.g. duration, modalities) before any commercialization or to improve predictions regarding closing of shellfish areas

    Is the meiofauna a good indicator for climate change and anthropogenic impacts?

    Get PDF
    Our planet is changing, and one of the most pressing challenges facing the scientific community revolves around understanding how ecological communities respond to global changes. From coastal to deep-sea ecosystems, ecologists are exploring new areas of research to find model organisms that help predict the future of life on our planet. Among the different categories of organisms, meiofauna offer several advantages for the study of marine benthic ecosystems. This paper reviews the advances in the study of meiofauna with regard to climate change and anthropogenic impacts. Four taxonomic groups are valuable for predicting global changes: foraminifers (especially calcareous forms), nematodes, copepods and ostracods. Environmental variables are fundamental in the interpretation of meiofaunal patterns and multistressor experiments are more informative than single stressor ones, revealing complex ecological and biological interactions. Global change has a general negative effect on meiofauna, with important consequences on benthic food webs. However, some meiofaunal species can be favoured by the extreme conditions induced by global change, as they can exhibit remarkable physiological adaptations. This review highlights the need to incorporate studies on taxonomy, genetics and function of meiofaunal taxa into global change impact research

    Impacts des efflorescences du dinoflagellé toxique Alexandrium minutum sur la reproduction et le développement de l'huître Crassostrea gigas

    No full text
    Recent decades have witnessed the intensification and spread of harmful algal blooms (HAB). HAB are known to disrupt coastal ecosystems and to be toxic for marine organisms. These phenomena are also suspected to be responsible for recruitment failures of bivalves. The aim of this PhD was to study the consequences of blooms of toxic dinoflagellate Alexandrium minutum on the reproduction, development and recruitment of the oyster Crassostrea gigas, a species of major economic importance. A. minutum is known to produce paralytic shellfish toxins (PST) and bioactive extracellular compounds (BEC). Gametes and early life stages were the most sensitive, particularly to the bioactive extracellular compounds (BEC) produced by A. minutum, which inhibited fertilization and embryogenesis. A. minutum modified the behaviour of veliger larvae, decreased their filtration, growth and settlement. Exposure of adult oysters during gametogenesis affected the development of offspring, reflecting alterations in gamete content and/or vertical transfer of PST. Mode of action of PST and BEC are to further investigate. These oyster exposures, conducted at environmentally relevant concentrations of microalgae, suggest that recurrent blooms of A. minutum during oyster spawning and larval development could have long-term consequences on the structure of wild and cultured populations of C. gigas.Les dernières décennies ont été marquées par l’intensification et l’expansion des efflorescences de micro-algues toxiques (HAB). Connues pour perturber les écosystèmes côtiers et pour leur toxicité sur les organismes marins, les HAB sont suspectées d’être à l’origine de défauts de recrutement de bivalves. Cette thèse avait pour objectif d’étudier les conséquences des efflorescences du dinoflagellé toxique Alexandrium minutum, producteur de toxines paralysantes (PST) et des composés bioactifs extracellulaires (BEC), sur la reproduction, le développement et le recrutement de l’huître Crassostrea gigas, une espèce à l’importance économique majeure. Les gamètes libres et les jeunes stades de développement se révèlent être les plus sensibles, en particulier aux BEC produits par A. minutum qui inhibent la fécondation et l’embryogenèse. A. minutum modifie le comportement des larves véligères, provoque une diminution de leur filtration, de leur croissance et du taux de fixation. Une exposition des adultes, pendant la gamétogenèse, affecte le développement des descendants, traduisant des altérations du contenu gamétique et/ou un transfert vertical des PST. Les modalités d’action des PST et des BEC devront être précisées. Nos expérimentations, réalisées à des concentrations de micro-algues rencontrées dans l’environnement, suggèrent que des efflorescences récurrentes d’A. minutum lors des périodes de reproduction et de développement larvaire pourraient, sur le long terme, affecter la structure des populations naturelles et cultivées de C. gigas

    Effects of the toxic dinoflagellate Alexandrium minutum on the reproduction and development of the oyster Crassostrea gigas

    No full text
    Les dernières décennies ont été marquées par l’intensification et l’expansion des efflorescences de micro-algues toxiques (HAB). Connues pour perturber les écosystèmes côtiers et pour leur toxicité sur les organismes marins, les HAB sont suspectées d’être à l’origine de défauts de recrutement de bivalves. Cette thèse avait pour objectif d’étudier les conséquences des efflorescences du dinoflagellé toxique Alexandrium minutum, producteur de toxines paralysantes (PST) et des composés bioactifs extracellulaires (BEC), sur la reproduction, le développement et le recrutement de l’huître Crassostrea gigas, une espèce à l’importance économique majeure. Les gamètes libres et les jeunes stades de développement se révèlent être les plus sensibles, en particulier aux BEC produits par A. minutum qui inhibent la fécondation et l’embryogenèse. A. minutum modifie le comportement des larves véligères, provoque une diminution de leur filtration, de leur croissance et du taux de fixation. Une exposition des adultes, pendant la gamétogenèse, affecte le développement des descendants, traduisant des altérations du contenu gamétique et/ou un transfert vertical des PST. Les modalités d’action des PST et des BEC devront être précisées. Nos expérimentations, réalisées à des concentrations de micro-algues rencontrées dans l’environnement, suggèrent que des efflorescences récurrentes d’A. minutum lors des périodes de reproduction et de développement larvaire pourraient, sur le long terme, affecter la structure des populations naturelles et cultivées de C. gigas.Recent decades have witnessed the intensification and spread of harmful algal blooms (HAB). HAB are known to disrupt coastal ecosystems and to be toxic for marine organisms. These phenomena are also suspected to be responsible for recruitment failures of bivalves. The aim of this PhD was to study the consequences of blooms of toxic dinoflagellate Alexandrium minutum on the reproduction, development and recruitment of the oyster Crassostrea gigas, a species of major economic importance. A. minutum is known to produce paralytic shellfish toxins (PST) and bioactive extracellular compounds (BEC). Gametes and early life stages were the most sensitive, particularly to the bioactive extracellular compounds (BEC) produced by A. minutum, which inhibited fertilization and embryogenesis. A. minutum modified the behaviour of veliger larvae, decreased their filtration, growth and settlement. Exposure of adult oysters during gametogenesis affected the development of offspring, reflecting alterations in gamete content and/or vertical transfer of PST. Mode of action of PST and BEC are to further investigate. These oyster exposures, conducted at environmentally relevant concentrations of microalgae, suggest that recurrent blooms of A. minutum during oyster spawning and larval development could have long-term consequences on the structure of wild and cultured populations of C. gigas

    Unknown Extracellular and Bioactive Metabolites of the Genus Alexandrium: A Review of Overlooked Toxins

    Get PDF
    Various species of Alexandrium can produce a number of bioactive compounds, e.g., paralytic shellfish toxins (PSTs), spirolides, gymnodimines, goniodomins, and also uncharacterised bioactive extracellular compounds (BECs). The latter metabolites are released into the environment and affect a large range of organisms (from protists to fishes and mammalian cell lines). These compounds mediate allelochemical interactions, have anti-grazing and anti-parasitic activities, and have a potentially strong structuring role for the dynamic of Alexandrium blooms. In many studies evaluating the effects of Alexandrium on marine organisms, only the classical toxins were reported and the involvement of BECs was not considered. A lack of information on the presence/absence of BECs in experimental strains is likely the cause of contrasting results in the literature that render impossible a distinction between PSTs and BECs effects. We review the knowledge on Alexandrium BEC, (i.e., producing species, target cells, physiological effects, detection methods and molecular candidates). Overall, we highlight the need to identify the nature of Alexandrium BECs and urge further research on the chemical interactions according to their ecological importance in the planktonic chemical warfare and due to their potential collateral damage to a wide range of organisms

    The toxic dinoflagellate Alexandrium minutum affects oyster gamete health and fertilization potential

    No full text
    Dinoflagellates from the globally distributed genus Alexandrium are known to produce both paralytic shellfish toxins (PST) and uncharacterized bioactive extracellular compounds (BEC) with allelopathic, ichthyotoxic, hemolytic and cytotoxic activities. In France, blooms of Alexandrium minutum appear generally during the spawning period of most bivalves. These blooms could therefore alter gametes and/or larval development of bivalves, causing severe issues for ecologically and economically important species, such as the Pacific oyster Crassostrea (=Magallana) gigas. The aim of this work was to test the effects of three strains of A. minutum producing either only PST, only BEC, or both PST and BEC upon oyster gametes, and potential consequences on fertilization success. Oocytes and spermatozoa were exposed in vitro for 2 hours to a range of environmentally realistic A. minutum concentrations (10 to 2.5 × 104 cells mL-1). Following exposure, gamete viability and reactive oxygen species (ROS) production were assessed by flow cytometry, spermatozoa motility and fertilization capacities of both spermatozoa and oocytes were analysed by microscopy. Viability and fertilization capacity of spermatozoa and oocytes were drastically reduced following exposure to 2.5 × 104 cells mL-1 of A. minutum. The BEC-producing strain was the most potent strain decreasing spermatozoa motility, increasing ROS production of oocytes, and decreasing fertilization, from the concentration of 2.5 × 103 cells mL-1. This study highlights the significant cellular toxicity of the BEC produced by A. minutum on oyster gametes. Physical contact between gametes and motile thecate A. minutum cells may also contribute to alter oyster gamete integrity. These results suggest that oyster gametes exposure to A. minutum blooms could affect oyster fertility and reproduction success

    Active and passive biomonitoring of trace elements, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls in small Mediterranean harbours

    Full text link
    peer reviewedPollution particularly affects coastal ecosystems due to their proximity to anthropic sources. Among those en- vironments, harbours are subjected to marine traffic but also to accidental and chronic pollution. These areas are thus exposed to complex mixtures of contaminants such as trace elements and organic contaminants which can impact marine species, habitats, and ecosystem services. The monitoring of these compounds is thus a crucial issue for assessment of environmental health. In this context, the aim of the present work was to evaluate the chemical contamination of harbours in Corsica (NW Mediterranean) by measuring the bioaccumulation of trace elements, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls in mussels, limpets, and sea cu- cumbers. The human health risks associated with seafood consumption were also assessed. Results reveal a relatively low contamination in the Corsican harbours studied compared to larger Mediterranean ports and suggest that the potential health risk for consumers eating seafood is low.Quality of the marine environment in the Mediterranean port areas (QUAMPO

    The toxic dinoflagellate Alexandrium minutum impairs the performance of oyster embryos and larvae

    No full text
    International audienceThe dinoflagellate genus Alexandrium comprises species that produce highly potent neurotoxins known as paralytic shellfish toxins (PST), and bioactive extracellular compounds (BEC) of unknown structure and ecological significance. The toxic bloom-forming species, Alexandrium minutum, is distributed worldwide and adversely affects many bivalves including the commercially and ecologically important Pacific oyster, Crassostrea gigas. In France, recurrent A. minutum blooms can co-occur with C. gigas spawning and larval development, and may endanger recruitment and population renewal. The present study explores how A. minutum affects early-oyster development by exposing embryos and larvae, under controlled laboratory conditions, to two strains of A. minutum, producing only BEC or both PST and BEC. Results highlight the major role of BEC in A. minutum toxicity upon oyster development. The BEC strain caused lysis of embryos, the most sensitive stage to A. minutum toxicity among planktonic life-stages. In addition, the non-PST-producing A. minutum strain inhibited hatching, disrupted larval swimming behavior, feeding, growth, and induced drastic decreases in survival and settlement of umbonate and eyed larvae (9 and 68 %, respectively). The findings indicated PST accumulation in oyster larvae (e.g. umbonate stages), possibly impairing development and settlement of larvae in response to the PST-producing strain. This work provides evidences that A. minutum blooms could hamper settlement of shellfish

    Molecular Characterization of Voltage-Gated Sodium Channels and Their Relations with Paralytic Shellfish Toxin Bioaccumulation in the Pacific Oyster Crassostrea gigas

    Get PDF
    Paralytic shellfish toxins (PST) bind to voltage-gated sodium channels (Nav) and block conduction of action potential in excitable cells. This study aimed to (i) characterize Nav sequences in Crassostrea gigas and (ii) investigate a putative relation between Nav and PST-bioaccumulation in oysters. The phylogenetic analysis highlighted two types of Nav in C. gigas: a Nav1 (CgNav1) and a Nav2 (CgNav2) with sequence properties of sodium-selective and sodium/calcium-selective channels, respectively. Three alternative splice transcripts of CgNav1 named A, B and C, were characterized. The expression of CgNav1, analyzed by in situ hybridization, is specific to nervous cells and to structures corresponding to neuromuscular junctions. Real-time PCR analyses showed a strong expression of CgNav1A in the striated muscle while CgNav1B is mainly expressed in visceral ganglia. CgNav1C expression is ubiquitous. The PST binding site (domain II) of CgNav1 variants possess an amino acid Q that could potentially confer a partial saxitoxin (STX)-resistance to the channel. The CgNav1 genotype or alternative splicing would not be the key point determining PST bioaccumulation level in oysters

    Bioactive extracellular compounds produced by the dinoflagellate Alexandrium minutum are highly detrimental for oysters

    Get PDF
    International audienceBlooms of the dinoflagellate Alexandrium spp., known as producers of paralytic shellfish toxins (PSTs), are regularly detected on the French coastline. PSTs accumulate into harvested shellfish species, such as the Pacific oyster Crassostrea gigas, and can cause strong disorders to consumers at high doses. The impacts of Alexandrium minutum on C. gigas have often been attributed to its production of PSTs without testing separately the effects of the bioactive extracellular compounds (BECs) with allelopathic, hemolytic, cytotoxic or ichthyotoxic properties, which can also be produced by these algae. The BECs, still uncharacterized, are excreted within the environment thereby impacting not only phytoplankton, zooplankton but also marine invertebrates and fishes, without implicating any PST. The aim of this work was to compare the effects of three strains of A. minutum producing either only PSTs, only BECs, or both PSTs and BECs, on the oyster C. gigas. Behavioral and physiological responses of oysters exposed during 4 days were monitored and showed contrasted behavioral and physiological responses in oysters supposedly depending on produced bioactive substances. The non-PST extracellular-compound-producing strain primarily strongly modified valve-activity behavior of C. gigas and induced hemocyte mobilization within the gills, whereas the PST-producing strain caused inflammatory responses within the digestive gland and disrupted the daily biological rhythm of valve activity behavior. BECs may therefore have a significant harmful effect on the gills, which is one of the first organ in contact with the extracellular substances released in the water by A. minutum. Conversely, the PSTs impact the digestive gland, where they are released and mainly accumulated, after degradation of algal cells during digestion process of bivalves. This study provides a better understanding of the toxicity of A. minutum on oyster and highlights the significant role of BECs in this toxicity calling for further chemical characterization of these substances
    corecore