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Modelling paralytic shellfish toxins (PST) accumulation in Crassostrea
gigas by using Dynamic Energy Budgets (DEB)

Abstract
As other filter-feeders, Crassostrea gigas can concentrate paralytic shellfish toxins (PST) by consuming
dinoflagellate phytoplankton species like Alexandrium minutum. Intake of PST in oyster tissues mainly results
from feeding processes, i.e. clearance rate, pre-ingestive sorting and ingestion that are directly influenced by
environmental conditions (trophic sources, temperature). This study aimed to develop a mechanistic model
coupling the kinetics of PST accumulation and bioenergetics in C. gigas based on Dynamic Energy Budget
(DEB) theory. For the first time, the Synthesizing Units (SU) concept was applied to formalize the feeding
preference of oysters between non-toxic and toxic microalgae. Toxin intake and accumulation were both
dependent on the physiological status of oysters. The accumulation was modelled through the dynamics of
two toxin compartments: (1) a compartment of ingested but non-assimilated toxins, with labile toxins within
the digestive gland eliminated via faeces production; (2) a compartment of assimilated toxins with a rapid
detoxification rate (within a few days). Firstly, the DEB-PST model was calibrated using data from two
laboratory experiments where oysters have been exposed to A. minutum. Secondly, it was validated using data
from another laboratory experiment and from three field surveys carried out in the Bay of Brest (France) from
2012 to 2014. To account for the variability in PST content of A. minutum cells, the saxitoxin (STX) amount
per energy units in a toxic algae (ρPST) was adjusted for each dataset. Additionally, the effects of PST on the
oyster bioenergetics were calibrated during the first laboratory experiment. However, these effects were shown
to depend on the strain of A. minutum. Results of this study could be of great importance for monitoring
agencies and decision makers to identify risky conditions (e.g. production areas, seawater temperature), to
properly assess detoxification step (e.g. duration, modalities) before any commercialization or to improve
predictions regarding closing of shellfish areas.
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Abstract

As other filter-feeders, Crassostrea gigas can concentrate paralytic shellfish toxins (PST) by consuming di-

noflagellate phytoplankton species like Alexandrium minutum. Intake of PST in oyster tissues mainly results

from feeding processes, i.e. clearance rate, pre-ingestive sorting and ingestion that are directly influenced by

environmental conditions (trophic sources, temperature). This study aimed to develop a mechanistic model

coupling the kinetics of PST accumulation and bioenergetics in C. gigas based on Dynamic Energy Budget

(DEB) theory. For the first time, the Synthesizing Units (SU) concept was applied to formalize the feeding

preference of oysters between non-toxic and toxic microalgae. Toxin intake and accumulation were both

dependent on the physiological status of oysters. The accumulation was modelled through the dynamics of

two toxin compartments: (1) a compartment of ingested but non-assimilated toxins, with labile toxins within

the digestive gland eliminated via faeces production; (2) a compartment of assimilated toxins with a rapid

detoxification rate (within a few days). Firstly, the DEB-PST model was calibrated using data from two la-

boratory experiments where oysters have been exposed to A. minutum. Secondly, it was validated using data

from another laboratory experiment and from three field surveys carried out in the Bay of Brest (France)

from 2012 to 2014. To account for the variability in PST content of A. minutum cells, the saxitoxin (STX)

amount per energy units in a toxic algae (ρPS T ) was adjusted for each dataset. Additionally, the effects of
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PST on the oyster bioenergetics were calibrated during the first laboratory experiment. However, these ef-

fects were shown to depend on the strain of A. minutum. Results of this study could be of great importance

for monitoring agencies and decision makers to identify risky conditions (e.g. production areas, seawater

temperature), to properly assess detoxification step (e.g. duration, modalities) before any commercialization

or to improve predictions regarding closing of shellfish areas.

Keywords: Alexandrium minutum, Paralytic shellfish toxins (PST), Dynamic Energy Budget (DEB),

Modelling, Pacific oyster

1. Introduction

Proliferating phytoplankton species can cause damages to other marine organisms by modifying the

environment (i.e. eutrophication, foams production, depletion of oxygen, destruction of habitats) or by syn-

thesizing toxins that can be accumulated in the trophic web (Anderson et al., 2002). Dinoflagellate belon-

ging to the genus Alexandrium are responsible for most paralytic shellfish poisoning (PSP) events. In 1994,

the first human cases of PSP due to a bloom of Alexandrium sp. were reported in the Mediterranean sea

(Honsell et al., 1996). Since then, this genus has been increasingly incriminated for other events world-

wide (Anderson, 1989; Hallegraeff, 1993; Cembella, 1998; Guallar et al., 2017). A. minutum synthesizes

paralytic shellfish toxins (PST), including STX and its derivatives, that can be bioaccumulated throughout

the food chain via feeding. Filter-feeders, such as bivalves, are primary consumers and are able to bioac-

cumulate these toxins. At high concentrations, PST can have deleterious effects on the immune response

and homoeostasis of bivalves, and are responsible for myoatrophies, alterations of the digestive gland or

of other tissues (Haberkorn et al., 2010a,b; Hégaret et al., 2012). Moreover, by accumulating high loads

of these toxins, filter-feeders may also become toxic for secondary consumers, including humans, by pro-

voking tingling, numbness, paralysis and death by respiratory arrest (Shumway, 1990) in the worst case.

Many countries have established monitoring programs in order to limit the risk of human intoxication (Vis-

ciano et al., 2016). In Europe for instance, above the threshold of 80 µg STX 100 g−1 of shellfish tissues,

the commercialization and harvesting of bivalves is closed, which induces economical losses for shellfish

producers.

Different toxicokinetics (TK) models have been proposed to describe the kinetics of PST accumula-

tion and detoxification in bivalves by modelling either ingestion processes or toxin biotransformation (e.g.
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Yamamoto et al., 2003; Lassus et al., 2004, 2007; Guéguen et al., 2011). In Crassostrea gigas, the accu-

mulation of PST is influenced by the oyster feeding (Pousse et al., 2017), which is directly linked to the

seawater temperature (Bougrier et al., 1995), the food availability (Barillé et al., 1993) and the physiological

status of the animal (Soletchnik et al., 1997). Thus, in order to better understand and predict the relation-

ships between the environment, the individual physiology and the toxin accumulation, there is a need to

couple a bioaccumulation model to an individual physiological model.

A bioenergetic model based on Dynamic Energy Budgets (DEB) theory has been developed and used for

C. gigas (e.g. Pouvreau et al., 2006; Bourlès et al., 2009; Alunno-Bruscia et al., 2011; Bernard et al., 2011;

Thomas et al., 2016; Gourault et al., 2018). DEB theory describes and quantifies the energy flows from in-

gestion and assimilation to maintenance, growth, maturation and reproduction of an individual (Kooijman,

2010). For two marine fishes, the hake and the sole (Bodiguel et al., 2009; Eichinger et al., 2010) and two

mussels (Van Haren et al., 1994; Casas and Bacher, 2006), realistic TK models based on DEB enabled to

predict the concentration of xenobiotics in the animal tissues by coupling bioaccumulation and detoxifica-

tion of xenobiotics to energy flows. However, these previous studies did not integrate the direct effects of

contaminants on organisms as is aimed at by toxicodynamics models (TD). To address this last issue the

DEBtox framework has been developed in the context of DEB theory (Kooijman and Metz, 1984; Kooijman

and Bedaux, 1996; Jager and Zimmer, 2012). A DEB-based TKTD approach dealing with PST bioaccumu-

lation and including sub-lethal bioenergetics impacts on C. gigas (Li et al., 2002; Haberkorn et al., 2010a,b)

would thus be very promising.

The synthesizing units (SU) concept, compatible with DEB theory, was shown to be able to account for

the trophic preference of bivalves (Kooijman, 1998, 2006, 2010; Saraiva et al., 2011; Lavaud et al., 2014).

Oysters are able to sort the particles they ingest (Ward and Shumway, 2004) when they are exposed to a

mixture of algae, including toxic and non-toxic ones. Although the pre-ingestive sorting in bivalves relies

on the size, the nutritive quality and/or the carbohydrate signature of algae (Ward et al., 1998; Rosa et al.,

2013; Espinosa et al., 2016; Rosa et al., 2017a), rather than on intracellular toxins such as PST (Li and

Wang, 2001), this process may also affect the toxin accumulation (Mafra et al., 2009). Thus, the concept of

SUs (Kooijman, 1998) is potentially useful to assess specifically the quantity of toxic algae consumed by

an oyster when exposed to a mix of toxic and non-toxic algae.

The aim of this work was to describe the bioaccumulation kinetics of PST in C. gigas and to integrate

the effects of these toxins in the oyster-DEB model. Firstly, we calibrated a DEB model describing PST
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accumulation from datasets collected under laboratory controlled conditions that combine data on oyster

growth, toxin content and detoxification. Secondly, the model was validated with data from independent

laboratory experiment and from field surveys conducted in the bay of Brest (Brittany, France) in 2012, 2013

and 2014.

2. Material and methods

2.1. Model formalization

2.1.1. Oyster DEB model

PST kinetics and effects were coupled/integrated in a Dynamic Energy Budget model (Fig. 1). We based

our model development on an existing and already published DEB model for C. gigas. This allowed us to

quantify the dynamics of the energy budget of the oyster. This model is derived from a standard DEB model

described by Kooijman (2000, 2010) and first applied to this species by Pouvreau et al. (2006). The model

equations are those of Bernard et al. (2011). As the purpose of this study was not to address the process of

spawning and more generally oyster gametogenesis, for the sake of simplification, energy fluxes linked to

the gonad defined in Bernard et al. (2011) and further applied by Thomas et al. (2016) were not integrated

within this model. The conceptual scheme of the model and the equations are given in Fig. S1 and Tab. S1

of Appendix 1 in Supplementary material, respectively. Further explanations about the model principles are

given in Appendix 1 in Supplementary material. The parameter set used in this study is that used by Thomas

et al. (2016), only one parameter value has been modified to allow the model to describe control (without

toxic algae) observations: the size at puberty (Lwp here considered as a fixed value according to Kooijman,

2000). Parameters are given in Tab. S2 of Appendix 2.

2.1.2. Toxin intake

PST toxins (saxitoxins and analogues) are mainly intracellular (Yasumoto and Murata, 1993; Hallegraeff

et al., 2003). Consequently, the main accumulation pathway within the food chain occurs with ingestion by

algal consumers. In the presence of both toxic and non-toxic algae, oysters are able to select one type

of algae, which may affect toxin accumulation (Mafra et al., 2009). This selection phenomenon relies on

complex mechanisms of pre-ingestive sorting (Ward et al., 1998) and controls toxic algae ingestion rate: in

the presence of a specific toxic algae concentration, toxic algae ingestion rate is dependent upon the presence

and concentration of non toxic algae. The synthesizing units (SU) concept (Kooijman, 1998) has been used

to account for this selection in bivalves in accordance with Saraiva et al. (2011) and Lavaud et al. (2014). In
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the present study, we distinguished only two food sources: non-toxic and toxic algae (respectively denoted

N and T ). The preference formulation was taken from Lavaud et al. (2014). The SU scheme was based on

substitutable substrates that bind in a sequential way (Kooijman, 2010). A SU binds to a substrate (either

N or T ) with a maximum binding rate ({ḞNm} and {ḞTm}, respectively) and unbinds with a maximum

dissociation rate {ḣAm}. When a non-toxic alga (N) arrives while the SU is bound to a toxic alga (T ), the

SU can unbind from T to bind with N. The rate at which a SU substitutes a toxic alga to a non-toxic alga is

denoted ḃNT . Theoretically, the reverse (substituting a non-toxic alga to a toxic alga) is also possible but this

possibility was ignored given the low preference of C. gigas for species in the Alexandrium genus (Espinosa

et al., 2016; Pousse et al., 2017). Parameters, symbols and units of this SU system are summarized in Table

1. According to Lavaud et al. (2014), the functional responses for non-toxic ( fN) and toxic ( fT ) substrates

are written as follows:

fN =

αT{ḞNm}N − βN{ḞTm}T

αNαT − βNβT
(1a)

fT =

αN{ḞTm}T − βT{ḞNm}N

αNαT − βNβT
(1b)

with: αN = {ḣN Am} + {ḞNm}N; αT = {ḣT Am} + {ḞTm}T + ḃNT N (2a)

βN = {ḞNm}N − ḃNT N; βT = {ḞTm}T (2b)

where {ḞNm} and {ḞTm} are respectively the binding rates (L d
−1

cm
−2) of non-toxic and toxic algae,

{ḣN Am} and {ḣT Am} the dissociation rates (cell d
−1

cm
−2) of non-toxic and toxic algae, ḃNT the binding

rates (L d
−1

cm
−2) of non-toxic algae from toxic algae. The dissociation rates can be calculated according

to Lavaud et al. (2014):

{ḣN Am} =
{ ṗXm}κXN

ρE wE yEN MN
(3a)

{ḣT Am} =
{ ṗXm}κXT

ρE wE yET MT
(3b)

with { ṗXm} the oyster maximum surface-specific ingestion rate (J d
−1

cm
−2), κXN

and κXT
the assimilation

efficiency for non-toxic and toxic algae, wE the molecular weight of reserve, ρE the scaled energy content

of reserve (J gdw
−1), yEN and yET the yields of reserve from non-toxic and toxic algae (gdw gdw

−1), MN and

MT the dry mass of non-toxic and toxic algae, respectively.
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Ingestion rate ṗX (J d
−1) is equal to the sum of the ingestion of non-toxic and toxic algae and depends

on the oyster structural surface-area (V2/3; Kooijman, 2010). It can be written as:

ṗX = { ṗXm}V
2/3

( fN + fT ) (4)

The flux of ingested toxins (J̇XPS T
, µg S T X eq. d

−1), that is proportional to toxic algae ingestion rate, can be

described as:

J̇XPS T
= { ṗXm}V

2/3
fT ρPS T (5)

with ρPS T , the PST amount per energy unit in toxic algae (µgS T X eq. J
−1). This parameter varies with

cellular toxicity which is known to depend on algal strain and/or growth conditions (Chou et al., 2004;

Leong et al., 2004).

2.1.3. Toxin dynamics

A fraction of the ingested toxic algae is assimilated (or absorbed, i.e. enters in the oyster body) in oyster

tissues while the other fraction is egested through the gut whithout being assimilated (Laabir et al., 2007;

Hégaret et al., 2008). Dynamics and processes of elimination are very different if toxins are assimilated

(elimination through detoxification) or not (elimination by egestion). For this reason, PST dynamics need

to be described by two compartments (Silvert and Cembella, 1995; Yamamoto et al., 2003; Lassus et al.,

2007): a compartment of unassimilated toxins, that is characterized by a short-term turnover (within a few

hours), and a compartment of assimilated toxins with a mid-term turnover (several weeks). A schematic

representation of these two compartments is given in Fig.1. Despite the fast dynamics, the gut toxin content

can represent an important proportion of the total bivalve toxin content (Bricelj et al., 1990; Kwong et al.,

2006) and cannot be neglected.

Unassimilated toxins compartment. PST enter this compartment through ingestion and leave through either

assimilation or egestion. The dynamics of unassimilated toxins (QU) can thus be written as:

d

dt
QU = J̇XPS T

− J̇APS T
− J̇EPS T

(6)

where J̇XPS T
, J̇APS T

and J̇EPS T
are respectively the ingestion, assimilation and egestion rates of toxins. For

parsimony purposes, the digestive tract was considered as a simple plug-flow system in which assimilation

of toxins occurs immediately after ingestion and at a constant efficiency (κXPS T
). Because the toxin digestion

differs from processes associated to edible food (e.g. involvement of an immune response), we considered
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this value to be different from the assimilation efficiency κX . The parameter values, symbols and units used

to model PST dynamics are summarized in Table 1. The toxin assimilation rate was thus written as:

J̇APS T
= J̇XPS T

κXPS T
(7)

According to Kooijman (2010), the gut transit time (tg) is considered to be proportional to structural length

(V1/3). The toxin egestion rate at time t is taken to be equal to the toxin ingestion rate at time t − tg minus

toxin assimilation rate at time t − tg:

J̇EPS T
(t) = J̇XPS T

(t − tg) − J̇APS T
(t − tg) (8)

Assimilated toxins compartment. PST enter this compartment through assimilation (J̇APS T
) and only leave

through detoxification (J̇elimPS T
; Cembella et al., 1994; Oshima, 1995; Navarro and Contreras, 2010). Be-

cause gametes only contain less than 3 % of the total toxin content of the oyster (Hégaret et al., unpublished

data), we assumed that spawning is not associated to toxin release. Dynamics of assimilated toxins (QA)

thus amounts to:
d

dt
QA = J̇APS T

− J̇elimPS T
(9)

The elimination rate is proportional to QA through an elimination rate constant (kelim , in d−1):

J̇elimPS T
= kelim QA (10)

Total concentration in toxins. In order to compare the model predictions with observations, the total concen-

tration in toxins ([PS T]w, µg STX eq. 100g−1 of wet flesh mass) was calculated as:

[PS T]w =

QU + QA

Ww
× 100 (11)

with QA and QU the contents of the two toxin compartments, and Ww the wet flesh mass of the oyster

predicted by the DEB model (see Appendix 1 for detailed computation of Ww).

2.1.4. Effects of PST on oysters

In C. gigas, PST induce alterations in tissues (Haberkorn et al., 2010b; Hégaret et al., 2012), an immune

response (Haberkorn et al., 2010a), detoxification processes (Rolland et al., 2014) or prevention mechanisms

of cellular damages (Rolland et al., 2014; Fabioux et al., 2015). To model the effects of toxins upon oyster

bioenergetics, we assumed that PST increases the somatic maintenance costs. Because oyster responses

have been observed during presence of unassimilated A. minutum cells in the intestine (encapsulation), both
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assimilated and unassimilated toxin compartments have been assumed to contribute to this increase. These

effects have been modelled according to the DEBtox rules (Kooijman and Bedaux, 1996; Jager et al., 2014):

when the no-effect concentration ([PS T]NEC) is exceeded (Jager and Zimmer, 2012), a toxicant stress

parameter ([PS T]q) allows one to linearly scale the impact of PST as a function of the total concentration

of PST ([PS T]w). The volume specific somatic maintenance cost ([ ṗM]; J cm
−2

d
−1) can be written as:

[ ṗM] = [ ṗM0
] + [ ṗM0

]
1

[PS T]q

max(0, [PS T]w − [PS T]NEC) (12)

with [ ṗM0
], the volume-specific somatic maintenance cost in the absence of toxins (J cm

−3
d
−1).

2.2. Datasets

Parameters of the DEB-PST model (Tab. 1 and S2) were estimated by minimizing squared deviation

between the mean of observations (originated from datasets 1 and 2) and the mean of model predictions.

To assess the influence of the estimated parameters, a sensitivity analysis was carried out (Appendix 3, Fig.

S2). Then, the model with its parameters set was validated by comparing model predictions and observa-

tions from two independent datasets with different A. minutum strains and different conditions of exposures

to A. minutum (laboratory or field; datasets 3 and 4 respectively). Main information of the datasets are

summarized in Table 2.

Datasets 1 and 2 (parameters calibration)

Dataset 1. The food ingestion, the toxin accumulation and the growth of 3-month old oysters (total wet

mass = 2.3 g ± 0.9; see Petton et al., 2013) were measured over 6 or 8 weeks under 4 different trophic

conditions: (1) no food for 8 weeks; (2) a 6-weeks diet with non-toxic algae exclusively; (3) a 6-weeks diet

composed by non-toxic and toxic algae; (4) a 2-weeks diet of non-toxic and toxic algae, followed by no

food for 6 weeks (Table 2).

Three triplicate 50-L tanks per condition with a biomass of 300 g oysters (120 animals) were supplied

with 1-µm filtered and UV-treated seawater at a constant flow of 120 mL min−1 and at a temperature of

21°C. In conditions 2, 3 and 4, the non-toxic phytoplankton diet consisted in Tisochrysis lutea (CCAP

927/14) and Chaetoceros muelleri (CCAP 1010/3) in equal biomass proportion. The non-toxic algae were

continuously distributed in the tanks so that the outflow concentration was kept between 1000 and 2000

µm3
µL−1 (≈ 2.5 107 cell L−1). In conditions 3 and 4, the toxic algae A. minutum (strain Daoulas 1257

RCC4876, isolated in Brittany) was added to the non-toxic algae at a concentration varying from 2 105 to

8



6.5 105 cell L−1 (see Pousse et al., 2017). This strain with almost no bioactivity of extracellular compounds

(quantified by an allelopathic assay directed towards a diatom species, Long et al., 2018) was chosen to

study the impact of PST on oysters. PST profile of this strain (45% C2, 22% C1, 21% GTX3, 12% GTX2,

in mole %) was quantified by HPLC-FLD at Ifremer PHYC laboratory (Nantes, France) according to the

method described in Oshima (1995) with adaptations from Guéguen et al. (2011). A PST concentration of

0.053 pg STX-diHCl eq. cell−1 was calculated with EFSA toxicity equivalency factors (EFSA, 2009).

In each tank, 20 individuals were sampled weekly (except in weeks 5 and 7 for conditions 1 and 4),

measured (shell length, mm) and weighed (total wet mass and wet flesh mass, g, precision of 10−3 g). The

dry flesh mass was estimated on 10 individuals, PST were quantified on 5 animals of conditions 3 and 4

(the 5 remaining oysters were used for a histological survey, data not shown). In condition 3, 5 oysters

experienced a 6-days detoxification step in filtered seawater at the end of the 6-week diet of toxic and non-

toxic algae. In condition 4, 2 individuals per tank were sampled on days 1, 2, 3, 4, 5, 7, 9, 11 and 13 of the

detoxification step to measure PST content and estimate toxin elimination kinetics.

The concentrations of PST in oysters were quantified by using ELISA PSP kit developed by Abraxis (see

methods in Lassudrie et al., 2015a,b). Oyster tissues were mixed in pools of 5 individuals (1:1, mass:volume)

in 0.1 M HCl solution, grounded (Fastprep-24 5G homogenizer) and boiled for 5 min at 100◦C in order to

acid-hydrolyze some PST analogs into saxitoxin (STX), neoSTX and GTX1-4. The samples were then

analyzed with the Abraxis ELISA PSP kit following the manufacturer instructions and toxin concentrations

were estimated by spectrophotometry and expressed as µg of STX eq. for 100 g of total flesh mass.

Dataset 2. We used initial individual mass (in dry flesh mass) and toxin concentrations data of oysters that

were exposed for 2 days to non-toxic algae and then for 2 days to A. minutum (for a detailed description see

Pousse et al., 2017).

Datasets 3 and 4 (model validation)

Dataset 3. Adult oysters (mean wet flesh mass = 2.44 g ± 0.57) were conditioned during 8 weeks under

a mixed diet of non-toxic (T. lutea and C. muelleri) and toxic (A. minutum) algae. Non-toxic algae were

distributed to maintain a concentration ranging between 1000 and 2000 µm3
µL−1 in the tank outflow;

meanwhile A. minutum was distributed at a concentration of 105
cell L

−1. During the penultimate week of

conditioning, the concentration of A. minutum was raised to 5 105 cell L−1 on days 1 and 4 and 106 cell L−1

on days 2 and 3 to simulate a bloom of A. minutum. The strain of A. minutum used in this experiment

(AM89BM RCC1490) was isolated in the bay of Morlaix (Brittany, France) in 1995 and synthesized 1.3
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pg STX-diHCl eq. cell−1 (40% GTX3, 9% GTX2, 30% C2, 20% C1, ≈ 1% dc-GTX2 and dc-GTX3 in

%mole). This strain also produces extracellular compounds known to have allelopathic and cytotoxic effects

on other algae and marine organisms (Lelong et al., 2011; Borcier et al., 2017; Castrec et al., 2018). For this

experiment, PST concentrations were measured in the oyster digestive gland with the ELISA method. They

were further corrected to take into account the mass of the digestive gland and the ratio of PST in this organ

compared to the whole body (Guéguen, 2009).

Dataset 4. We used data of the Bay of Brest where recurrent blooms of A. minutum have been monito-

red (Chapelle et al., 2015). From 2012 to 2014, oysters were transferred at Pointe du Chateau (48°20’03"N,

04°19’145"W) in June or July when concentrations of A. minutum were expected to increase. When a bloom

occurred, oysters were sampled regularly in order to monitor the PST concentration in their tissues. In July

2012 during a bloom of A. minutum, two oyster groups were transferred into the laboratory at a week inter-

val, in order to monitor their detoxification in filtered seawater over 1 week. Concentrations of A. minutum

were obtained from seawater samples collected biweekly on the site where oysters were located. Enume-

ration of non-toxic algae were quantified weekly. Seawater temperature was measured by the monitoring

network SOMLIT (http://somlit-db.epoc.u-bordeaux1.fr/bdd.php). After linear interpolation, algae enume-

rations and seawater temperature were used as forcing variables for the DEB-PST model. In addition, PST

content of A. minutum was monitored during the 2013 bloom and quantified in the PHYC laboratory of

Nantes (see Guéguen et al., 2011, for the method). PST concentrations in the oyster digestive glands were

measured individually with ELISA assay or by HPLC-FLD (Oshima, 1995) for the 2012 survey (see toxin

profiles in Appendix 4.2, Tab. S3). The calibration curve between these two techniques (Appendix 4.2, Fig.

S3) were plotted and applied on HPLC-FLD data so that data could be compared. These concentrations

have also been corrected to be expressed as a function of the total wet flesh mass of oysters.

2.3. Model predictions and inter-individual variability

Both growth and toxin accumulation are known to vary among individuals. To take into account this

variability, the simulated individuals differed in initial conditions (V , E and ER) and in clearance rate as

explained hereafter.

2.3.1. Initial conditions

Based upon observations of length (Lw) and dry mass (Wd), initial conditions were calculated as: V =

(Lw δM)
3, E = e [Em]V , ER = 0 in juveniles and ER = (Wd−V dV)ρE−E in adults. Parameter significance
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and values are given in Tab. S3. The scaled reserve density (e) was taken to vary seasonally and was fixed

to 0.2 for dataset 1 (November), 0.5 for datasets 2 and 3 (March and April respectively) and 0.7 for dataset

4 (July). Missing data of Wd and Lw during the 2012 survey (dataset 4) led to compensate by simulating

20 individuals ranging from 0.1 to 2 g in dry flesh mass (range observed for 2013 survey) and length was

estimated from the dry flesh mass.

2.3.2. Clearance rates

The individual accumulation potential of oysters was shown to be closely related to the individual clea-

rance rate so that animals could be clustered into three groups with low, intermediate, and high toxin ac-

cumulation potential (Pousse et al., 2017). Accordingly, individuals were respectively distributed in these

clusters with the following frequencies: 25 %, 50 % and 25 %. One of these three groups was thus attribu-

ted randomly to each individual in accordance with the frequencies given above. Based upon the clearance

rates measured in Pousse et al. (2017) (dataset 2), individuals with a low potential for PST accumulation

had binding rates on non-toxic algae ({ḞNm}) and toxic algae ({ḞTm}) equal to 12 and 1.5 L d−1 cm−2;

intermediate to 16 and 4 L d−1 cm−2 and high to 20 and 8 L d−1 cm−2, respectively. This method of inclu-

ding inter-individual variability was applied to the data from Pousse et al. (2017). Based upon A. minutum

concentrations in each trial, the PST concentrations measured in oyster tissues by Pousse et al. (2017) were

compared to the PST concentrations predicted by the DEB-PST model.

3. Results

3.1. Parameter estimation

3.1.1. Oyster DEB-model

Based upon the growth observations of oysters exposed to conditions 1 and 2 of the dataset 1 (Fig. 2, A,

B), values of 0.05 gdw gdw
−1 for yEN and 0.79 for κLR were estimated. These values represent a satisfactory

estimation of oyster growth in both conditions. Unfortunately, it was impossible for us to estimate κLV (yield

of structure tissue used for maintenance) as the starvation was not strong enough to induce a structure lysis.

Its value was arbitrary fixed to 0.79. All parameters values are summarized in Tables 1 and S2.

3.1.2. Accumulation model

The PST accumulation in oysters of the condition 3 (dataset 1, A. minutum mixed with other non-

toxic algae for 6 weeks) was rather low (highest concentration = 14.9 µg STX eq. 100g−1 ; Fig. 3, A).
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A value of 0.18 was estimated for PST assimilation efficiency κXPS T
from this dataset. Algal cell counts

in water inflow and outflow indicated that the feeding rates of oysters were highly variable from day to

day, presumably because of variations in quality of the non-toxic algae. To account for this variability,

the parameters {ḞNm} and {ḞTm} were corrected in accordance with observations of ingestion measured

daily in the experimental tanks. Although the model overestimated PST accumulation at the first and third

sampling points, predictions were generally in good agreement with observations (Fig. 3, A). First-order

kinetics for toxin elimination with a value of 0.17 d−1 for kelim enabled us to describe accurately the toxin

dynamics in condition 4 (dataset 1; Fig. 3, B). From dataset 2 with A. minutum as single algae supply, a

value of 0.005 gdw gdw
−1 was estimated for yET (yield of reserve from toxic algae).

By combining the results from datasets 1 (Fig. 3) and 2 (Fig. 4), in which the same A. minutum strain

was used, a value of 0.130 µgSTX eq. J−1 was adjusted for the STX amount per energy unit in a toxic

particle (ρPS T ) for this strain.

3.1.3. Inter-individual variability

The capacity of the model to predict realistic variability in toxin bio-accumulation based upon the

variability in oyster clearance rate was validated on data from Pousse et al. (2017) (dataset 2). Based upon

the three mean values of clearance rate measured for the three oyster groups with low, intermediate, or

high accumulation potential in (Pousse et al., 2017), we observed a rather good fit of the predicted PST

concentrations in oysters compared to those observed (r2
= 0.78, Fig. 4).

3.1.4. Effects induced by PST

Without taking into account the PST effects on the maintenance costs, the model allowed us to predict

properly the gain and loss in mass of oysters for conditions 3 and 4 (dataset 1, Fig. 5; dashed lines). Never-

theless, in condition 4 (B), the model slightly overestimated observations. Deleterious effects of PST upon

oysters were included by setting [PS T]NEC = 0.1 µg STX eq. 100g−1 and [PS T]q = 7 µg STX eq. 100g−1

which allowed us to improve the model predictions of oyster growth (Fig. 5 A; continuous line) although the

mass loss was still slightly underestimated once oysters had totally depurated (Fig. 5 B; continuous line).

3.2. Model validation

3.2.1. Laboratory experiment (dataset 3)

The ρPS T value adjusted with previous experiments (datasets 1 and 2) did not allow us to obtain a good

fit with observations of bioaccumulation in dataset 3. However, PST cellular toxicity of the A. minutum
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strain used in this experiment is known to be an order of magnitude higher than for the strain used in

datasets 1 and 2 (Castrec et al., 2018). Increasing the value of ρPS T by a factor 1.15 produced a better fit

of the model with observations (Fig. 6; A). The growth of oysters was also properly predicted, although the

mass loss at the end of the experiment was underestimated (Fig. 6 B; black continuous line). The A. minutum

strain used in this experiment is also known to produce extracellular compounds which might contribute to

toxicity (Borcier et al., 2017; Castrec et al., 2018) and affect energy balance. Taking into account this higher

toxicity by decreasing toxicant stress concentration ([PS T]q) to 1 µg STX eq. 100g−1 (the lower the value

of [PS T]q, the higher the PST effects) provided a better fit between the predictions and the observations

(Fig. 6 B, black dashed line).

3.2.2. Field surveys (dataset 4)

Because of the high concentrations of PST accumulated by oysters in the field (until 20 times more

than the concentrations observed in the laboratory experiments), PST effects upon the energy budget led to

an unrealistic decrease in the oyster flesh mass for the simulated individuals when using the [PS T]q value

estimated from dataset 1 (predicted mass close to zero, not shown). This problem was solved by fixing

[PS T]q to 50 µg STX eq. 100g−1.

During the 2012 field survey, the concentrations of A. minutum cells in seawater at Pointe-du-Chateau

were found to range between 1.7 103 and 8 106 cell L−1. The value of the parameter ρPS T was adjusted to

0.086 µg STX eq. J−1 to enable an accurate model prediction of the PST accumulation in oyster tissues (Fig.

7).

In 2013, the A. minutum bloom was less intense (highest concentration reached 3 105 cell L−1) and was

associated with a low accumulation of PST by oysters (Fig. 8). During this survey, oysters were kept in the

field until the A. minutum bloom collapsed. The cellular concentration ranged from 1.4 to 9.0 pg STX-diHCl

eq. cell−1 during the monitoring period. For parsimony purposes, model predictions were performed with a

constant ρPS T value (0.463 µg STX eq. J−1), which enabled us to properly reproduce the observed dynamics

of PST during the monitoring (Fig. 8).

In 2014, the cell counts of A. minutum measured in the field ranged between 5 103 and 106 cell L−1.

The parameter ρPS T was adjusted to a value of 0.431 µg STX eq. J−1. Using temperature and algal concen-

trations (non-toxic and toxic) as forcing variables allowed the model to predict the observed dynamics of

toxin accumulation in oyster tissues (Fig. 9). Finally, the inter-individual variability was lower in the field

surveys than in the laboratory experiments. Indeed, individuals with an intermediate accumulation potential
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(continuous grey lines) associated to different initial masses were sufficient to describe the variability in

PST accumulation observed in the three field surveys.

4. Discussion

4.1. Relationship between A. minutum cell density during exposure and PST accumulation

During the three years of field monitoring, accumulation of PST was observed in oysters with a maxi-

mum concentration of 40 µg STX eq. 100g−1 in 2013 and of 300 µg STX eq. 100g−1 in 2012 after exposure

to A. minutum at cell densities between 3 105 and 8 106 cell L−1. During the experiment conducted by

Pousse et al. (2017) (dataset 2), with A. minutum only, the maximum concentration in oysters reached 173

µg STX eq. 100g−1 after oysters were exposed to 1.8 106 cell L−1 of A. minutum. In contrast, accumulation

values in both datasets 1 and 3 were surprisingly low (close to 10 µg STX eq. 100g−1) ; whereas, the cell

density of A. minutum during exposure was close to those observed in the field. During these two expe-

riments, oysters were exposed to both toxic and non-toxic algae, conversely oysters were only or mainly

exposed to A. minutum in Pousse et al. (2017) or during the A. minutum blooms 2012-2014.

The low accumulation observed when oysters were fed with both toxic and non-toxic algae may be

explained by particle selection. The pre-ingestive selection is a well-known phenomenon in bivalves based

upon complex mechanisms. It is unlikely that selection relies upon the presence of toxins (internal), but

might rather be attributable to an external signature (carbohydrate; signature, Espinosa et al., 2016) or to

surface physical properties of the algal cell (wetability, charge; Rosa et al., 2017b). Although probably not

based upon cellular toxicity, it has been shown that particle selection allows low toxin intake when toxic

algae are present in high concentration mixed with non-toxic algae (Mafra et al., 2009). In contrast, when

only A. minutum is present in the water column, which is the case during intense blooms, it is used as the

main food source by oysters.

We used synthesizing units (Kooijman, 1998) to deal with these selection processes as already applied

in bivalves (Kooijman, 2006; Saraiva et al., 2011; Lavaud et al., 2014). To our knowledge, it is the first

time that SUs were implemented to describe toxicant intake. The SU scheme used has been described by

Kooijman (2010) and used in Lavaud et al. (2014); it allows one to deal with substitutable substrates that

bind sequentially and to replace one substrate with another. The present study showed that this formulation

was effective in understanding oyster food preference when exposed to A. minutum and non-toxic algae.
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4.2. Toxin dynamics

Some modelling studies modelled PST dynamics with a single compartment (Blanco et al., 1997; Chen

and Chou, 2001; Blanco et al., 2003; Guéguen et al., 2011). Nevertheless, most authors agreed on the fact

that two elimination pathways (metabolization and egestion) were needed. Because these two pathways

imply different location of toxins accumulation with different temporal dynamics, we intuitively develo-

ped our model with two compartments of accumulation. This model can also be expressed with a single

compartment, however, the parameters gain is null and complicate the study of the two toxin elimination

pathways. Moreover, if we imagine an application of this model to other bivalves in which the digestive

gland is generally not consumed by humans (most Pectinidae), our approach based upon two compartments

would be useful. The unassimilated toxins compartment would remain identical while the assimilated toxins

compartment would be composed of sub-compartments corresponding to each organ of interest. Transfers

between organs and their specific elimination rate are the parameters to be added.

As developed in Silvert and Cembella (1995) or Lassus et al. (2007), toxin dynamics were modelled

through two-compartments: unassimilated toxins (digestive tract content in toxins, QU) and internal toxin

content (assimilated toxins, QA). Because gut transit time is short (Guéguen et al., 2008b), introducing

the unassimilated toxins compartment into the model was thought to account for the fast-dynamics of the

digestive tract. Nevertheless, our estimation indicated that this compartment could account for up to 50

% of the total amount of toxins (data not shown). For parsimony purposes, the gut transit time was only

considered to be dependent on oyster length and temperature, but this dynamic could be improved by taking

into account a dependence on feeding rate (Navarro et al., 1992; Moroño et al., 2001). Our work also showed

that a first order process efficiently described elimination of assimilated toxins. We estimated the elimination

constant to 0.17 d−1 which is similar to values found for other models on bivalves (0.31, 0.22, and 0.28 in

average for C. gigas, Yamamoto et al., 2003; Lassus et al., 2007; Guéguen et al., 2011, respectively; 0.17 and

0.15 for mussels, Hurst and Gilfillan, 1977; Blanco et al., 2003; 0.1 and 0.09 for clams, Hurst and Gilfillan,

1977; Chen and Chou, 2001; 0.1 for quahog, Bricelj et al., 1991). This value has been estimated with the

detoxification data where oysters were starved (in filtrated seawater). However, different studies have shown

that oysters feeding on non-toxic algae after an exposure to toxic algae could reduce their detoxification time

(Lassus et al., 2000, 2005; Guéguen et al., 2008a). Bricelj and Shumway (1998) suggested that it was linked

to an increase in the gut evacuation rate and to metabolism acceleration. According to these results, it would

be worthwhile to run a detoxification experiment and compare oysters fed on non-toxic algae with starved
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oysters to quantify the effect of oyster feeding during detoxification phase and determine whether it should

be integrated into the model.

A few model underestimations can be observed on the results of 2013 and 2014 field surveys (Fig.

8 and 9 respectively) while PST concentrations were measured in the digestive gland. These ones appear

mainly at the beginning of accumulation stages (days 6 and 10 in Fig. 8 ; day 21 in Fig. 9). Actually, these

observations of PST concentrations are likely overestimated during accumulation stages since these mea-

surements were made on oyster digestive glands. We converted PST concentrations measured in digestive

gland into concentration in the whole flesh by assuming that 80% of the PST are localized in the digestive

gland (Guéguen, 2009). In reality, it is probably not the case at the beginning of intoxication stage, since

toxins should be almost entirely localized in the digestive gland, which gathers unassimilated toxins and

assimilated toxins that are not transferred to other tissues yet. Note that the model parameters have been

fully estimated on PST concentrations measured in whole flesh data thus model predictions were not altered

by this measurement bias.

This model has been calibrated and validated on measurements of PST concentrations mostly obtained

by ELISA. This measurement technique is known to be less accurate than HPLC methods, especially when

biotransformations occur. The ELISA bioassay is manufactured to detect 100% of the saxitoxin quantity

present in a sample. In contrast, others PSP toxins are not fully recognized, so that PST concentrations

measurements may be sometimes underestimated with this technique (Dorantes-Aranda et al., 2017) as a

result of cross-reactivity of each PST analogue. This reason could potentially explain why PST measure-

ments are particularly low at days 7 and 21 in Fig. 3. To study the measurement deviations between PST

concentrations obtained by ELISA and HPLC, some samples belonging to the dataset 4 were treated simul-

taneously with these two techniques. Results show that measurements were strongly and linearly correlated

(r2
=0.91), and that ELISA tends to slightly overestimate the PST concentration with a factor equal to 1.04

(Appendix 4.2, Fig. S3).To take into account more accurately observations obtained from ELISA assays,

one alternative could be to integrate the different biotransformations occurring in oysters in the model, as it

was developed in some other models (Chen and Chou, 2001; Blanco et al., 2003). To calibrate this model,

PSP toxin profiles in oysters as well as data on the variables that influence biotransformation would be

needed.

16



4.3. ρPS T parameter

In our model, the parameter ρPS T accounts for the quantity of toxins per algal energy content; if the

energy per A. minutum cell remains constant, this value might directly relate to the cellular PST content.

As shown above, this value had to be adjusted to fit the model on each data set. The estimated ρPS T values

ranged from 0.086 to 0.463 µg STX eq. J−1, with a factor 5.3 between the lowest and the highest values.

The PST content of A. minutum is known to be highly variable, and differences in toxicity with a factor of

6.5 have been reported for a single A. minutum strain (Béchemin et al., 1999). The range of variation in

ρPS T parameter values in our study thus seems to be consistent with general knowledge. Variations in A.

minutum PST cellular content might change with strain or growth conditions (Boyer et al., 1987; Anderson

et al., 1990; Hwang and Lu, 2000). In addition, algal energy content has also been observed to be linked

to environmental conditions (Renaud et al., 2002). As both parameters affect ρPS T value, the fact that we

adjusted different values is not surprising.

PST cellular content of A. minutum cells during the bloom monitored in 2013 ranged from 1.4 to 9.0 pg

STX-diHCl eq. cell−1 within a short time scale. Although the model was run with a constant value for ρPS T

(0.463 µg STX eq. J−1), it allowed a satisfying fit between model and observations. The model seems thus

robust to predict toxin accumulation on short time scales.

The PST cellular content of the A. minutum strain used in datasets 1 and 2 was 24.5 times lower than

that used in dataset 3 (0.053 against 1.3 pg STX-diHCl eq. cell−1). We estimated ρPS T values of 0.13 and

0.15 µg STX eq. J−1, corresponding to a factor of 1.15. Such a difference in the factor might be attributable

either to different energy content per cell (which is unlikely because culture conditions were identical) or to

the fact that the latter strain produces some other toxic compounds than PST. It has been shown that some

Alexandrium spp. strains are able to produce extracellular toxic compounds (Arzul et al., 1999) known to

have allelopathic activity on algae (Ma et al., 2011; Lelong et al., 2011) and ichtyotoxic activity on bivalves

(Ford et al., 2008; Borcier et al., 2017; Castrec et al., 2018). Recent studies using the AM89BM A. minutum

strain (used in the dataset 3) suggested that these compounds might also negatively affect feeding behavior

in Pecten maximus (Borcier et al., 2017) and C. gigas (Castrec et al., 2018). Such differences in the feeding

behavior of C. gigas might explain the relatively low value estimated for ρPS T in dataset 3. In other words,

it is likely that extracellular compounds caused oysters to ingest fewer A. minutum cells than expected by

the model, thus resulting in an underestimation of the ρPS T value.

To improve model prediction of accumulation, further work is needed to better describe the relationship
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between ρPS T value and PST cellular content. Moreover, measuring PST cellular content and also esti-

mating the quantity of extracellular compounds or their toxicity, in addition to A. minutum environmental

concentration during field monitoring, would provide better data to understand the relationship between A.

minutum blooms and PST accumulation in oysters. For a management purpose where a specific sanitary

threshold is set, we also recommend to adjust the ρPS T parameter on observed data measured by official

HPLC methods for PST quantification for more precise predictions.

4.4. Links between oysters energy budget and PST dynamics in oyster tissues

Coupling an oyster DEB model and PST accumulation model allows one to account for the effects of

size and energetic status upon toxin accumulation and detoxification processes. As discussed previously,

the unique accumulation pathway is through feeding. Processes involved in feeding (filtration activity and

ingestion) are proportional to structural surface area (Kooijman, 2010). However, ingested toxins are diluted

in the total volume/mass of the animal (structure, reserves and gonad). Thus with an identical exposure

to toxic algae, small individuals are expected to accumulate higher concentrations of toxins than larger

individuals. Such a pattern has been observed in Aalvik and Framstad (1981) and discussed in the review

of Bricelj and Shumway (1998). This pattern might sometimes be hidden in experimental data as, for a

given structural size, oysters with the highest reserve quantity will accumulate less than others as PST are

diluted in an higher biovolume. The DEB-PST model allows one to predict these trends which strengthens

the interest of coupling accumulation and bioenergetic models.

Effects of PST upon bivalves physiology have been widely documented. PST are known to affect hemo-

cytes, gills, or muscles (Haberkorn et al., 2010a,b) and trigger defence or immune response. However, only

a few studies quantified the consequences of exposure to PST on bivalve energy budget. Li et al. (2002) ob-

served a decrease in the scope for growth, even at low PST concentrations (2.6 and 5.22 µg STX eq. 100g−1

respectively for Ruditapes philippinarum and Perna viridis), thus supporting our choice to integrate the

effects of PST and with a low no-effect concentration (i.e. [PS T]NEC=0.1 µg STX eq. 100g−1). Different

studies reported declines in bivalve growth rates during an exposure to PST-producing algae (Erard-Le Denn

et al., 1990; Nielsen and Strømgren, 1991; Bricelj et al., 1993; Luckenbach et al., 1993). Based upon these

observations, we assumed that PST affected maintenance costs and calibrated these effects with growth ex-

periments. Although uncertainty remains concerning the quantification of these effects ([PS T]q estimated

in the laboratory experiment were not applicable in the field) we suggest that these effects are not negligible
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because we estimated that maintenance costs were increased by a factor 1.5 in dataset 3 (Fig. 5). Such a

value has to be confirmed by laboratory experiments in which higher PST concentration would be reached.

The formulation for PST effect upon maintenance cost does not take into account potential time-lagged

effects on the energy budget (i.e. once toxins are eliminated, no effects remain on maintenance costs). Ne-

vertheless, results presented in figure 5 (B) tend to indicate that PST-induced effects upon energy balance

last longer than contamination as shrinking is still underestimated by the model when oysters have comple-

tely depurated. Such effects might be related to energy needed for tissue damage repair that may last longer

than PST elimination.

Effects were applied to maintenance costs in this model, however, PST can also alter reproductive func-

tions such as gamete viability (Haberkorn et al., 2010a). From data presented in the literature, an accurate

calibration of these effects appears difficult and would benefit from a dedicated experiment, where number

and energetic content of oocytes in individuals with varying PST burden would be measured. Furthermore,

extending this model to all oyster life stages does not seem to be warranted, as Yan et al. (2001) shed light

on the fact that decreases in egg hatching and larval survival during exposure to Alexandrium tamarense

could be associated with extracellular compounds rather than PST.

Parameter [PS T]q (toxicant stress concentration) estimated from dataset 1 was, unfortunately, not va-

lidated with the second laboratory experiment (dataset 3) nor with field data (dataset 4). Two different

reasons could potentially explain this. In dataset 3, effects were underestimated. It is likely that the ex-

tracellular compounds synthesized by the A. minutum strain used in this validation laboratory experiment

are responsible for these effects by means of (1) an increase in oyster tissues alteration (Ford et al., 2008)

and (2) a decrease in oyster feeding (Borcier et al., 2017; Castrec et al., 2018). It would be worthwhile

investigating bioenergetic costs caused by extracellular compounds to validate these two hypotheses. PST

effects were conversely overestimated for the field surveys as the model initially predicted a lethal mass loss

in oysters according to the environmental parameters. Three hypotheses could explain this phenomenon. (1)

Either PST induced less effects upon oysters held in the field, (2) oysters held in the field were less sensitive

to toxins or (3) A. minutum synthesizes less extracellular compounds in the field or have lesser effects upon

oyster bioenergetics. Oysters placed in the field and exposed in laboratory had different life experiences.

Before being transferred in the study site, field oysters spent time in natural environment, where they could

have been in contact with toxic algae. The effects of a prior exposure to toxic algae have already been ob-

served to cause higher feeding rates and PST loads in bivalves previously exposed (Shumway and Cucci,
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1987; Chebib et al., 1993; Bricelj and Shumway, 1998). Moreover a recent study observed that in C. gigas,

the nerves, which are the main STX targets, were less sensitive if the oysters had previously been exposed

to toxic algae (Boullot et al., 2018). Taking these results into account, it can be hypothesized that a prior

exposure to toxic algae may allow oysters to acquire a resistance to PST, i.e. exposures following the first

contact with toxic algae have smaller effects on C. gigas maintenance costs. Field PST-induced effects or

quantity of extracellular compounds synthesized by A. minutum in the environment should be further studied

by comparing PST and extracellular compounds effects on C. gigas within laboratory or field conditions.

5. Conclusion

Results presented in this study showed that linking bioaccumulation processes to energy balance, by

coupling bioaccumulation processes to a bioenergetic model based upon DEB theory allowed to properly

predict PST accumulation and to deal with weight loss associated to PST effects. Based upon partitioning

of the whole toxin quantity into two compartments (unassimilated and assimilated toxins), this model accu-

rately describes accumulation kinetics of PST in C. gigas by taking into account individual oyster condition

and environmental variables. Furthermore, the fact that this model calibrated with laboratory experiments

can be applied in the field, where trophic and environmental conditions are relatively different, contributes

to demonstrate its robustness. However, a difficulty remains concerning the STX amount per energy units in

a toxic algae (ρPS T ) which needs to be adjusted according to the toxicity of the A. minutum strain known to

be variable. This is the first time that the effects of PST were treated in a growth model and validated under

laboratory conditions. Results also show that quantifying the effects of PST upon oyster bioenergetics is

difficult and had to be adjusted according to the A. minutum strain and the exposure conditions (i.e. labora-

tory or field) to fit with observations. It is unlikely that the PST effects upon oysters are highly variable from

strain to strain, we rather hypothesize that extracellular compounds synthesized by A. minutum in addition

to PST, that are variable from strain to strain, might contribute to the effects of A. minutum upon the oyster

energy balance. This model offers a new tool for the study and the monitoring of PST accumulation. Further

studies should test different scenarios where biological functions such as gametogenesis, or the ploidy or

mass would be modified to identify risky conditions leading to high PST loads in oysters.
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*

Figure 1: Schematic representation of the DEB-PST model. Arrows with their mathematical names illustrate energy (black) and
PST (red) fluxes. Black and red ellipses correspond respectively to energy and PST compartments. The red asterisk shows the
energetic flux affected by PST. The SU function implemented to take into account pre-ingestive sorting is figured by the black box.
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(A)

(B)

Figure 2: Observed (black dots, with vertical error bars as standard deviation) and DEB-predicted (lines) dry flesh mass of oysters
over time in dataset 1, condition 1 (starvation for 8 weeks, A) and 2 (diet of non-toxic algae for 6 weeks, B). The black line is the
average of simulations of 20 individuals.
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Figure 3: Observed (dots) and predicted (lines; grey: individual simulations of 20 individuals; black: average simulation) toxin
concentrations in oyster tissues over time under condition 3 (A, a 6-week diet on both A. minutum and non-toxic algae) and
condition 4 (B, a 2-week diet with both A. minutum and non-toxic algae, followed by 6 weeks in filtered seawater) of the dataset
1. In both conditions, the PST concentration was measured weekly on 15 individuals during exposure stages. In condition 4, PST
content was measured daily on 3 individuals during the first 5 days of detoxification stage and every second day the following
week. ρPS T was adjusted to 0.130 µg STX eq. J−1.
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Figure 4: Observed versus predicted PST concentration in C. gigas (N=42) after 48-h exposure to A. minutum (see data from
Pousse et al., 2017, dataset 2). Dots indicate the PST concentration measured in oyster tissues at 48 h. The three different potential
of accumulation identified and attributed to each individual in Pousse et al. (2017) are represented by symbols and colours i.e.
high accumulation (red circle), intermediate (yellow triangle), low (blue square). In the model, they correspond to different values
for binding rates for toxic algae ({ḞT m} ; 1.5, 4, and 8 L d−1 cm−2, respectively) measured in Pousse et al. (2017). The black line
corresponds to the linear regression model adjusted on these data.
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(A)

(B)

Figure 5: Observed (black dots, with vertical error bars as standard deviation) and predicted (lines) dry flesh mass (g) of oysters
with and without PST effects on maintenance under condition 3 (A, 6-week diet with both A. minutum and non-toxic algae) and
under condition 4 (B, 2-week diet with both A. minutum and non-toxic algae, followed by 6 weeks in filtered seawater) of dataset
1. Black continuous line indicates the mean of the trajectories of 20 individuals simulated including PST effect ([PS T]q = 7

µgSTX eq. 100g−1), while black dashed line indicates the mean of the trajectories of 20 individuals simulated without PST effect.

32



0
.4

1
.0

0
.8

0
.6

0
.2

(A)

(B)

P
S

T
 c

o
n
c
e
n
tr

a
ti
o
n
 (

µ
g
 S

T
X

 e
q
. 
1
0
0

g
-1

)
D

ry
 fl

e
s
h
 m

a
s
s
 (

g
)

Figure 6: Observed (black dots, with vertical error bars as standard deviation) and predicted (lines) toxin concentration
(µg STX eq. 100g−1) in C. gigas over time (A), and observed (dots, with vertical error bars as standard deviation) and predic-
ted (lines) dry flesh mass (g) of oysters over time (B) while feeding on a mix of toxic and non-toxic algae (dataset 3). The solid
grey (i.e. individual model predictions of 25 individuals) and solid black (mean model prediction of the 25 ind.) lines were obtained
by using [PS T]q = 7 µg STX eq. 100g−1. The dashed line represents the mean of 25 individuals simulated with a value for [PS T]q

estimated from these observations (1 µg STX eq. 100g−1). The starting points correspond to the initial measurements of 25 oysters.
ρPS T was adjusted to 0.150 µg STX eq. J−1.
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Figure 7: Observed (dots) and predicted (lines) concentrations of PST in oysters during a bloom of A. minutum in the bay of
Brest (field accumulation stage, dataset 4) and after the bloom (laboratory detoxification in filtered seawater starting at day 24, A
and at day 31, B). Simulations were run with the DEB-PST model on 20 individuals (ρPS T= 0.086 µg STX eq. J−1). Grey dashed
lines correspond to individuals with low and high potential of PST accumulation, continuous grey lines indicate individuals with
intermediate accumulation potential and black lines refer to the mean of all individuals.
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Figure 8: Observed (symbols) and predicted (lines) concentrations of PST in oysters transferred in the bay of Brest prior to a bloom
of A. minutum in 2013 and sampled over 30 days (dataset 4). Simulations were run with the DEB-PST model on 10 individuals
(ρPS T= 0.463 µg STX eq. J−1). Grey dashed lines correspond to individuals with low and high potential of PST accumulation, conti-
nuous grey lines indicate individuals with intermediate accumulation potential and black lines refer to the mean of all individuals.
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Figure 9: Observed (symbols) and predicted (lines) concentrations of PST in oysters transferred in the bay of Brest prior to a bloom
of A. minutum in 2014 and sampled over 42 days (dataset 4). Simulations were run with the DEB-PST model on 20 individuals
(ρPS T= 0.431 µg STX eq. J−1). Grey dashed lines correspond to individuals with low and high potential of PST accumulation, conti-
nuous grey lines indicate individuals with intermediate accumulation potential and black lines refer to the mean of all individuals.



Table 1: Parameters of the DEB-PST model for Crassostrea gigas. Symbols, values, units and source of each parameter are given.
Description Symbol Value Unit References
SU parameters

Binding rate of non-toxic algae {ḞNm} 12/16/20 L d
−1

cm
−2 Pousse et al. (2017)

Binding rate of toxic algae {ḞTm} 1.5/4/8 L d
−1

cm
−2 Pousse et al. (2017)

Binding rate of non-toxic algae from toxic algae ḃNT ={ḞNm} L d
−1

cm
−2 Lavaud et al. (2014)

Dry mass of non-toxic algae MN 2.8 10−11
gdw cell

−1 Reynolds (2006)
Dry mass of toxic algae (A. minutum) MT 9.4 10−10

gdw cell
−1 Reynolds (2006)

Yield of reserve of non-toxic algae yEN 0.05 gdw gdw
−1 This study

Yield of reserve of toxic algae yET 0.005 gdw gdw
−1 This study

PST parameters

STX amount per energy unit in a toxic algae ρPS T strain dependent µgS T X eq. J
−1 This study

Toxin assimilation efficiency κXPS T
0.18 − This study

Toxin elimination coefficient kelim 0.17 d
−1 This study

Gut time transit tg 0.135 V
1/3

+ 0.0125 d This study

No-effect concentration [PS T]NEC 0.1 µg S T X eq. 100g
−1 This study

Toxicant stress concentration [PS T]q 7 µg S T X eq. 100g
−1 This study



Table 2: General information of the 4 datasets used in this study either for parameter calibration (datasets 1,2) or for model
validation (datasets 3,4).

Dataset Key features of the experimental conditions Purposes Related figures Sources
Dataset 1 4 trophic conditions for oysters: Parameter calibration

(Laboratory) (1) starvation (8 weeks) κLR Fig. 2
(2) diet of non-toxic algae (6 weeks) yEN Fig. 2 This study
(3) diet of non-toxic algae and A. minutum (6 weeks) yET , κXPS T

, kelim, tg (3,4) Fig. 3, 5
(4) diet of non-toxic algae and A. minutum (2 weeks), then starvation (6 weeks) [PS T]NEC,[PS T]q (3,4) Fig. 3, 5

Dataset 2 Diet of A. minutum only for 2 days Parameter calibration Pousse et al. (2017)
(Laboratory) A. minutum strain identical to dataset 1 synthesizing only PST {ḞTm}, yET , κXPS T

, tg Fig. 4
Dataset 3 Diet of non-toxic algae and A. minutum (8 weeks), peak of A. minutum in week 7 Model validation Castrec et al., in prep
(Laboratory) A. minutum strain with PST and BEC* Fig. 6
Dataset 4 Oysters transfer in Bay of Brest prior to an A. minutum bloom in 2012, 2013, 2014 Model validation This study
(Field) In 2012, 2 detoxification stages in laboratory after a 25 and 32 days field exposure Fig. 7, 8, 9

*BEC = Bioactive Extracellular Compounds
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Appendix 1: DEB-model for the Pacific oyster

Appendix 1.1: Three state variables DEB-model for the Pacific oyster

The core DEB model describing the energy budget of the oyster (C. gigas) is the one developed by

Bernard et al. (2011) and further updated by Thomas et al. (2016). It is derived from the standard DEB model

(Kooijman, 2000). First applications of the oyster-DEB model were published by Pouvreau et al. (2006) and

Bourlès et al. (2009). The conceptual scheme of the model is described in Figure S1, the equations are given

in Table S1. Parameters signification is given in Table S2 (Appendix 2). This DEB model describes the time

change of three state variables: the energy content of reserve, E (J); the structural volume growth, V (cm3)

and the energy allocated to maturity development and reproduction, ER (J). A fixed fraction (κ) of flux of

mobilized reserve (ṗC) is allocated to structural maintenance (ṗM) and growth. Maintenance has priority

over growth. The 1 − κ fraction of mobilized reserve is allocated to maturity or reproduction (ER) and to

maturity maintenance (ṗJ , in priority). Bernard et al. (2011) added to the standard DEB model a specific

module to detail the energy allocation to gametogenesis, which formulation involves an additional state

variables and 4 parameters. In our study, however, this module was removed from the model since the

reproduction dynamics was not the focus. The model does not take into account larval life; the transition

from juvenile to adult occurs at a fixed size (Vp) according to Kooijman (2000). All metabolic rates are

controlled by temperature according to the extensive Arrhenius relationship (Kooijman, 2000, see Eq. 1).
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cT = exp {TA

T1
−

TA

T
} (1 + exp {TAL

T1
−

TAL
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} + exp {TAH

TH
−

TAH

T1
})

(1 + exp {TAL

T
−

TAL

TL
} + exp {TAH

TH
−

TAH

T
})−1

(1)

with cT the temperature correction parameter applied to each physiological rate of an organism, T1 the

reference temperature (in K) for rates and TA the Arrhenius temperature (in K). Outside the optimal tem-

perature boundaries (TL, low boundary and TH , high boundary), physiological rates drop quickly according

the Arrhenius temperature for lower (TAL) and higher (TAH) boundary.

The parameter set is the one used by Thomas et al. (2016), except for the physical length at puberty

(Lwp). Parameters values are given in Table S2 (Appendix 2).

E

V ER

Food faeces 

X

Maintenance

FIGURE S1: Conceptual scheme of the DEB-model modified from Bernard et al. (2011). Energy fluxes are represented by solid

arrows. The compartments E, V and ER (black ellipses) define the energy allocated to the reserves, the structure and the reproduction

respectively. White ellipses correspond to maintenance costs (somatic and maturity). In case of starvation, if maintenances costs

cannot be fulfilled, energy is firstly obtained from the lysis of ER ( ṗLR) then from the lysis of V ( ṗLV ). These fluxes are represented

by dotted arrows and detailed in Appendix 1.2.
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TABLE S1: Description of all energy fluxes of the DEB model when food resources are sufficient to fulfill maintenance costs.

*,denotes fluxes that have been adapted to take into account the Synthesizing Units.

Process Symbol Equation

Ingestion* ṗX { ṗXm}V
2/3

cT ( fN + fT)

Assimilation* ṗA { ṗXm}V
2/3

cT ( fN κXN
+ fT κXT

)

Reserve mobilization ṗC [E]cT
[EG]v̇V

2/3
+[ṗM]V

κ[E]+[EG] with[E] = E/V

Somatic maintenance cost ṗM [ ṗM]V cT

Growth ṗG κ ṗC − ṗM

Maturity maintenance ṗJ min(V,Vp) 1−κ
κ

[ ṗM] cT

Reproduction (when V ≥ Vp) ṗR (1 − κ) ṗC − ṗJ

else = 0

The energy fluxes allow to calculate the dynamics of the state variables E, V and ER as follows:

Reserve (J) dE

dt
= ṗA − ṗC (2)

Structure (cm
3) dV

dt
=

ṗG

[EG] (3)

Reproduction (J) dER

dt
= ṗR (4)

Based upon dynamics of the three state variables, the individual wet flesh mass of an oyster is calculated as:

Ww = (E + ER

ρE
+ V dv) 1

(1 − θw) (5)

with the energy content of reserves ρE (J gdw
−1), the structural density dV (gdw cm

−3) and the oyster water

content (θw).
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Appendix 1.2: Specific case of starvation conditions

In case of food limitation, when ṗC is not sufficient to pay somatic maintenance costs (ṗM) and/or

maturity maintenance costs (ṗJ), the energy is obtained from lysis of the reproduction buffer (ṗLR). The

compartment ER is constituted of energy allocated to reproduction and potentially of energy used to develop

gonad. It is assumed that the remobilization of energy from the gametes has overheads (1− κLR, with κLR =

0.79 estimated from dataset 1; Table S2). When the energy in ER is totally consumed and thus does not allow

to fulfill maintenance costs, the lysis of the structure occurs at the rate ṗLV with (1 − κLV) the overheads of

structure lysis. The parameter κLV could not be estimated from the starvation experiment, which did not last

long enough to induce the full exhaustion of ER. Thus, κLV was arbitrary fixed to 0.79 (Table S2). A scheme

describing these fluxes is given in Fig. S1.

In this context, the state variables E, V , ER are calculated as follows:

When κ ṗC < ṗM :

dE

dt
= ṗA − ṗC (6)

if V ≥ Vp and
ER

dt
≥ ṗLR; dV

dt
= 0 (7)

dER

dt
= −ṗLR (8)

with ṗLR =

1
κLR

( ṗM − κ ṗC − ((1 − κ) ṗC − ṗJ)) (9)

else dER

dt
= 0 (10)

dV

dt
=

−ṗLV

ρVdV
(11)

with ṗLV =

1
κLV

( ṗM − κ ṗC − ((1 − κ) ṗC − ṗJ))) (12)
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Appendix 2: Model parameters

Parameters symbols, values, units and sources of the standard model used in this study are presented in

Table S2. Except Lwp, this entire parameter set has been used in Bernard et al. (2011) and Thomas et al.

(2016).

TABLE S2: Parameters of the standard DEB model for Crassostrea gigas. Symbols, values, units and source of each parameter are

given.

Description Symbol Value Unit References

Biological parameters

Shape coefficient δM 0.175 − van der Veer et al. (2006)

Physical length at puberty Lwp 2.4 cm This study

Water content θw 0.8 - This study

Reserve parameters

Max surface specific ingestion rate { ṗXm} 1 025 J cm
−2

d
−1 Bernard et al. (2011)

Volume specific maintenance cost [ ṗM0
] 44 J cm

−3
d
−1 Bernard et al. (2011)

Energy conductance v̇ 0.183 cm d
−1 van der Veer et al. (2006)

Assimilation efficiency of non-toxic algae κXN
0.75 − van der Veer et al. (2006)

Assimilation efficiency of toxic algae κXT
0.65 − Pousse, unpub. data

Energy content of 1 g of reserve ρE 19 600 J gdw
−1 Kooijman (2010)

Molecular weight of reserve wE 23.9 g mol
−1 Kooijman (2010)

Yield of reproductive tissue used for maintenance κLR 0.79 − This study

Structure parameters

Energy fraction allocated to soma κ 0.45 − van der Veer et al. (2006)

Volume specific cost for structure [EG] 3900 J cm
−3 Bernard et al. (2011)

Density of structure dV 0.15 gdw cm
−3 Whyte et al. (1990)

Energy content of 1 g of structure ρV 15 600 J gdw
−1 Bernard et al. (2011)

Yield of structure tissue used for maintenance κLV 0.79 − This study

Temperature effect

Arrhenius temperature TA 5 800 K van der Veer et al. (2006)

Reference temperature for rates T1 293 K Bernard et al. (2011)

Lower boundary tolerance range TL 281 K Bourlès et al. (2009)

Upper boundary tolerance range TH 300 K Bourlès et al. (2009)

Arrhenius temperature for lower boundary TAL 75 000 K van der Veer et al. (2006)

Arrhenius temperature for upper boundary TAH 30 000 K van der Veer et al. (2006)
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Appendix 3: Sensitivity analysis

To assess the influence of the parameters calibrated in this study on the growth and the PST accumulation

in oysters, a sensitivity analysis was conducted. The sensitivity index was calculated from the following

equation (Bodiguel et al., 2009):

SI(%) = 1
n

n

∑
i=1

∣ŷ1
i − ŷ

0
i ∣

ŷ
0
i

100 (13)

where n is the number of time steps, ŷ
0
i and ŷ

1
i are respectively the model predictions (in this case dry flesh

mass and PST concentration in oyster) with the calibrated and modified parameter value at time t. Modified

value corresponds to -10% or +10% of the calibrated parameter value (see Table 1). The sensitivity index

was calculated from model predictions of dataset 1 (condition 3, i.e. diet of non-toxic algae and A. minutum

for 6 weeks).

[PST]NECkelim [PST]q

[PST]NECkelim [PST]q

S
I 
(%

)
S
I 
(%

)

(A)

(B)

Growth

PST concentration

FIGURE S2: Sensitivity index (SI) for growth (A) and PST concentration (B) computed for DEB-PST parameters calibrated in this

study. Effects of -10% and +10% variation of parameter values are respectively represented in dark and light grey. The sensitivity

analysis was run on model outputs of dataset 1 from condition 3 (diet of non-toxic algae and A. minutum for 6 weeks).
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Results of the sensitivity analysis on growth predictions show that the yield of reserve of non-toxic algae

(yEN) is the most sensitive parameter (Fig. 2, A). Three parameters linked to toxins (κXPS T
, kelim, [PS T]q)

exhibit a similar influence on growth. Surprisingly, these parameters are more sensitive than the yield of

reserve of toxic algae (yET ) which is an energy linked parameter.

Concerning the sensitivity indexes calculated for the PST accumulation predictions (Fig. 2, B), parameters

κXPS T
and kelim lead to an important mean variation of 9.6% and 12.6% predictions in PST concentrations,

respectively. It can also be noticed that yEN and yET affect in a rather similar way (respectively 4.6% and

5.6% in average) the predicted PST concentration, indicating that the impact of non-toxic algae on PST

accumulation in oysters are at least as important as the impact of toxic algae. Finally, this analysis shows

that the gut time transit (tg) and the no-effect concentration ([PS T]NEC) have a weak effect on growth and

PST concentration predictions.
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Appendix 4: HPLC-FLD measurements of PST

Appendix 4.1: PST profiles in oysters

TABLE S3: Toxin profile (%mol) measured by HPLC-FLD of oysters sampled during 2012, 2013 and 2014 surveys (dataset 4).
Year dc-GTX3 GTX5 dc-GTX2 GTX3 GTX2 NeoSTX STX C1 C2 C3

2012 0.14 1.03 0.46 13.75 24.66 0.68 1.22 26.90 28.93 2.23

2012 0.27 3.29 1.27 14.81 30.49 0.52 0.82 37.94 8.63 1.96

2012 0.22 2.82 1.17 16.82 22.94 1.59 1.12 33.26 9.96 10.10

2012 0.20 6.83 1.01 15.96 24.89 1.46 1.15 36.71 9.27 2.51

2012 0.23 4.86 1.25 13.02 22.55 6.12 0.99 40.40 8.13 2.45

2012 0.24 4.36 1.38 13.87 24.72 4.36 0.90 38.82 8.37 2.99

2012 0.19 4.97 1.07 15.56 21.77 4.42 1.46 38.53 8.80 3.22

2012 0.25 4.45 1.47 13.52 23.34 2.37 1.22 39.15 10.25 3.98

2012 0.20 4.01 1.36 14.17 25.85 2.17 1.24 33.00 10.12 7.87

Mean 0.21 3.68 1.06 17.03 23.94 2.21 1.01 34.06 13.23 3.57

2013 0.00 0.00 0.00 37.90 34.72 0.00 0.00 0.00 0.00 27.38

2013 0.00 0.00 0.00 34.08 16.53 19.61 0.00 0.00 4.24 25.53

2013 0.00 0.00 0.00 41.20 22.11 0.00 0.00 0.00 0.00 36.68

2013 0.37 0.00 0.00 37.64 15.68 0.00 0.00 0.00 11.14 35.17

2013 0.51 0.00 0.00 43.12 16.40 0.00 0.00 0.00 8.18 31.78

2013 0.78 0.00 1.91 30.47 17.52 12.72 0.00 0.00 10.63 25.96

2013 0.00 0.00 0.00 27.90 26.93 0.00 0.00 0.00 19.16 26.02

2013 0.48 0.00 0.00 30.31 14.86 0.00 0.00 0.00 12.40 41.95

2013 0.39 0.00 0.91 32.27 15.09 0.00 0.00 0.00 12.81 38.52

2013 0.29 0.00 0.56 31.49 18.04 0.00 0.00 0.55 21.40 27.67

2013 0.24 0.00 0.66 43.38 11.46 0.00 0.00 0.69 17.47 26.10

2013 0.20 0.00 0.75 32.04 13.82 0.00 1.40 0.87 18.79 32.13

2013 0.29 0.00 1.23 29.31 20.63 0.00 2.52 1.19 19.14 25.69

2013 0.33 5.48 1.60 15.74 33.90 0.00 0.00 1.90 24.66 16.38

2013 0.28 4.60 1.66 18.02 28.86 0.00 0.00 1.69 30.18 14.71

Mean 0,28 0.67 0.62 32.33 20.44 2.16 0.26 0.46 14.01 28.78

2014 0.17 0.00 0.23 23.88 11.40 0.54 0.00 12.25 51.52 0.00

2014 0.24 0.00 0.28 35.35 15.08 0.74 0.00 10.08 38.22 0.00

2014 0.17 0.00 0.27 33.31 14.64 0.62 0.00 12.72 38.27 0.00

2014 0.21 0.00 0.32 29.23 16.75 0.70 0.00 12.86 39.93 0.00

2014 0.19 0.00 0.29 29.84 19.41 0.88 0.00 12.31 37.08 0.00

2014 0.15 0.00 0.22 34.58 15.85 0.65 0.17 11.60 36.77 0.00

Mean 0.19 0.00 0.27 31.03 15.52 0.69 0.03 11.97 40.30 0.00
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Appendix 4.2: Relationship between HPLC and ELISA measurements

HPLC (µg STX eq. 100g-1)

E
L
IS

A
 (

µ
g
 S

T
X

 e
q

. 
1
0
0
g

-1
)

FIGURE S3: PST concentrations of oysters from 2012, 2013 and 2014 surveys (dataset 4) analyzed by ELISA (µg STX eq. 100g−1)

and HPLC-FLD (µg STX eq. 100g−1) techniques. A linear regression (black line, intercept forced to zero) was applied to these

data.
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