18,606 research outputs found
Directed Random Walk on the Lattices of Genus Two
The object of the present investigation is an ensemble of self-avoiding and
directed graphs belonging to eight-branching Cayley tree (Bethe lattice)
generated by the Fucsian group of a Riemann surface of genus two and embedded
in the Pincar\'e unit disk. We consider two-parametric lattices and calculate
the multifractal scaling exponents for the moments of the graph lengths
distribution as functions of these parameters. We show the results of numerical
and statistical computations, where the latter are based on a random walk
model.Comment: 17 pages, 8 figure
Non-diffusive transport in plasma turbulence: a fractional diffusion approach
Numerical evidence of non-diffusive transport in three-dimensional, resistive
pressure-gradient-driven plasma turbulence is presented. It is shown that the
probability density function (pdf) of test particles' radial displacements is
strongly non-Gaussian and exhibits algebraic decaying tails. To model these
results we propose a macroscopic transport model for the pdf based on the use
of fractional derivatives in space and time, that incorporate in a unified way
space-time non-locality (non-Fickian transport), non-Gaussianity, and
non-diffusive scaling. The fractional diffusion model reproduces the shape, and
space-time scaling of the non-Gaussian pdf of turbulent transport calculations.
The model also reproduces the observed super-diffusive scaling
Levy ratchets with dichotomic random flashing
Additive symmetric L\'evy noise can induce directed transport of overdamped
particles in a static asymmetric potential. We study, numerically and
analytically, the effect of an additional dichotomous random flashing in such
L\'evy ratchet system. For this purpose we analyze and solve the corresponding
fractional Fokker-Planck equations and we check the results with Langevin
simulations. We study the behavior of the current as function of the stability
index of the L\'evy noise, the noise intensity and the flashing parameters. We
find that flashing allows both to enhance and diminish in a broad range the
static L\'evy ratchet current, depending on the frequencies and asymmetry of
the multiplicative dichotomous noise, and on the additive L\'evy noise
parameters. Our results thus extend those for dichotomous flashing ratchets
with Gaussian noise to the case of broadly distributed noises.Comment: 15 pages, 6 figure
A Sampled-data Regulator using Sliding Modes and Exponential Holder for Linear Systems
In a general command tracking and disturbance rejection problem, it is known that a sampled-data controller using zero-order hold may only guarantee asymptotic tracking at the sampling instances, but in general cannot guarantee the absence of ripples between the sampling instants. In this paper, a discrete robust regulator and a sampled-data robust regulator using slide modes techniques and exponential holder are presented. In particular, it is shown that the controller proposed for the sampled-data system ensures asymptotic tracking when applied to the continuous-time system
The Cavity Approach to Parallel Dynamics of Ising Spins on a Graph
We use the cavity method to study parallel dynamics of disordered Ising
models on a graph. In particular, we derive a set of recursive equations in
single site probabilities of paths propagating along the edges of the graph.
These equations are analogous to the cavity equations for equilibrium models
and are exact on a tree. On graphs with exclusively directed edges we find an
exact expression for the stationary distribution of the spins. We present the
phase diagrams for an Ising model on an asymmetric Bethe lattice and for a
neural network with Hebbian interactions on an asymmetric scale-free graph. For
graphs with a nonzero fraction of symmetric edges the equations can be solved
for a finite number of time steps. Theoretical predictions are confirmed by
simulation results. Using a heuristic method, the cavity equations are extended
to a set of equations that determine the marginals of the stationary
distribution of Ising models on graphs with a nonzero fraction of symmetric
edges. The results of this method are discussed and compared with simulations
Separatrix Reconnections in Chaotic Regimes
In this paper we extend the concept of separatrix reconnection into chaotic
regimes. We show that even under chaotic conditions one can still understand
abrupt jumps of diffusive-like processes in the relevant phase-space in terms
of relatively smooth realignments of stable and unstable manifolds of unstable
fixed points.Comment: 4 pages, 5 figures, submitted do Phys. Rev. E (1998
Testing M2T/T2M Transformations
Presentado en: 16th International Conference on Model Driven Engineering Languages and Systems (MODELS 2013). Del 29 de septiembre al 4 de octubre. Miami, EEUU.Testing model-to-model (M2M) transformations is becoming a prominent topic in the current Model-driven Engineering landscape. Current approaches for transformation testing, however, assume having explicit model representations for the input domain and for the output domain of the transformation. This excludes other important transformation kinds, such as model-to-text (M2T) and text-to-model (T2M) transformations, from being properly tested since adequate model representations are missing either for the input domain or for the output domain. The contribution of this paper to overcome this gap is extending Tracts, a M2M transformation testing approach, for M2T/T2M transformation testing. The main mechanism we employ for reusing Tracts is to represent text within a generic metamodel. By this, we transform the M2T/T2M transformation specification problems into equivalent M2M transformation specification problems. We demonstrate the applicability of the approach by two examples and present how the approach is implemented for the Eclipse Modeling Framework (EMF). Finally, we apply the approach to evaluate code generation capabilities of several existing UML tools.Universidad de Málaga. Campus de Excelencia Internacional AndalucĂa Tech. Proyecto TIN2011-2379
Where Heart Meets Smart: The Making of a Grantmaker
· Graduate programs in nonprofit management increasingly include philanthropic studies in their curricula. However, these programs generally focus on a grant seeker\u27s point of view.
· This case study describes a graduate philanthropic studies course at the University of San Diego developed from a grant maker\u27s perspective. Students partner with a local private foundation to serve as its program officers for a special initiative.
· By becoming grant makers the students experience the intellectual, emotional, and practical challenges of effective grant making. They develop grant making competencies and an appreciation for the art and science of philanthropy. The foundation benefits from increased rigor, an infusion of fresh perspective, and an expanded awareness of a region\u27s nonprofit landscape.
· This case demonstrates that philanthropic studies is an applied science with a knowledge base that can be both drawn upon and added to, significantly improving practice in the field
Determination of tetracycline and its major degradation products by liquid chromatography with fluorescence detection
A liquid chromatographic method of tetracycline and its major degradation products on a C8-reversed phase column with acidic mobile phase and fluorescence detection is described. The quantification limit, measured as the amount of sample that gave a signal ten times the peak-to-peak noise of the baseline, was: 0.25 ng for tetracycline (TC) and epitetracycline (ETC), 25 ng for and 4-epianhydrotetracycline (EATC) and 50 ng for anhydrotetracycline (ATC) of injected standard. By means of this liquid chromatography (LC) assay TC, ETC, EATC and ATC as main degradation products of tetracycline, can be separated and determined with good sensitivity and specificity within 15 min.http://www.sciencedirect.com/science/article/B6TGX-43HVHWC-1D/1/9763379e028400de01242a673bd4528
- …