We use the cavity method to study parallel dynamics of disordered Ising
models on a graph. In particular, we derive a set of recursive equations in
single site probabilities of paths propagating along the edges of the graph.
These equations are analogous to the cavity equations for equilibrium models
and are exact on a tree. On graphs with exclusively directed edges we find an
exact expression for the stationary distribution of the spins. We present the
phase diagrams for an Ising model on an asymmetric Bethe lattice and for a
neural network with Hebbian interactions on an asymmetric scale-free graph. For
graphs with a nonzero fraction of symmetric edges the equations can be solved
for a finite number of time steps. Theoretical predictions are confirmed by
simulation results. Using a heuristic method, the cavity equations are extended
to a set of equations that determine the marginals of the stationary
distribution of Ising models on graphs with a nonzero fraction of symmetric
edges. The results of this method are discussed and compared with simulations