355 research outputs found

    UC-324 IT4983 Capstone Project - Paddle for the Cure NYC

    Get PDF
    In this project we took on the role of IT consultants for a non-profit organization called Paddle for the Cure NYC. This organization aims to provide support and events for breast cancer survivors and their families. We were tasked with researching innovative methods on how the organization’s digital platforms can be improved to attract more of their target audience. Our team focused on five main areas: Search Engine Optimization, Website Analysis, Social Media Exposure, and Host Website Software. We provided recommendations for improvement based on research and implementation strategies to ensure that it will be valuable and usable to the client

    Sustainable organic dyes from winemaking lees for photoelectrochemical dye-sensitized solar cells

    Get PDF
    During the last two decades, Dye Sensitized Solar Cells (DSSCs) have received a great deal of attention as a promising, low-cost alternative to conventional silicon photovoltaic devices. Natural dye molecules can be used as a sensitizer for their low cost, good light absorbance, easy preparation process, and biodegradability. In this study, dyes were obtained from wine lees, the last by-product of winemaking process, supplied by a venetian winery (Italy). Polyphenols, like tannins and anthocyanins, which were extracted from winemaking lees, were adsorbed on a nanostructured ordered mesoporous titanium dioxide, previously treated at different temperatures (400-600 ffiC). Both dyes and titania semiconductor samples were studied with different techniques. The tests were carried out on prototypes to evaluate the cell power and the photocurrent generated under simulated solar light irradiation. The obtained solar energy conversion efficiencies are comparable to those that were reported in literature by using organic dyes extracted from vegetables, fruits, and plants. It is significant that these dyes are largely available and cost effective, since recovered from a waste otherwise to be disposed of, opening up a perspective of feasibility for inexpensive and environmentally friendly dye solar cells to generate green electricity and transforming agri-food waste into a resource

    Adsorption of CO2 on Amine-Grafted Activated Carbon

    Get PDF
    Adsorption on amine-grafted materials may be a potentially attractive alternative to capturing CO2 from power plants. Activated Carbon (AC) has been proposed as a potential adsorbent due to its natural affinity for CO2 and to the possibility of tailoring textural properties and surface chemistry to enhance capacity and selectivity. An AC commercial sample was functionalized with monoethanolamine (MEA) in order to obtain nitrogen-enriched AC with two different loadings (ACN10 and ACN20). Samples characterization was carried out by nitrogen adsorption/desorption isotherms at 77 K, XPS, FTIR and adsorption microcalorimetry. CO2 equilibrium adsorption experiments were accomplished in a volumetric system in the pressure range of vacuum up to 10 bar, at 298 and 348 K. Impregnated activated carbon presented different chemical and textural characteristics with a significant reduction in the surface area, depending on the amine loading. A high adsorption capacity at room temperature and high pressure was observed for the pristine AC as compared to the modified samples. The reduction in surface area affected the adsorption capacity of CO2 at 298 and 348 K, except for adsorption on ACN10 at 348 K, which suggests the occurrence of chemisorption.Fil: Bezerra, Diôgo P.. Universidade Federal do Ceara. Department of Chemical Engineering. Grupo de Pesquisa em Separações por Adsorção; BrasilFil: Da Silva, Francisco W. M.. Universidade Federal do Ceara. Department of Chemical Engineering. Grupo de Pesquisa em Separações por Adsorção; BrasilFil: de Moura, Pedro A. S.. Universidade Federal do Ceara. Department of Chemical Engineering. Grupo de Pesquisa em Separações por Adsorção; BrasilFil: Sapag, Manuel Karim. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico San Luis. Instituto de Física Aplicada; ArgentinaFil: Vieira, Rodrigo S.. Universidade Federal do Ceara. Department of Chemical Engineering. Grupo de Pesquisa em Separações por Adsorção; BrasilFil: Rodriguez Castellon, Enrique. Universidad de Malaga. Facultad de Ciencias; EspañaFil: de Azevedo, Diana C. S.. Universidade Federal do Ceara. Department of Chemical Engineering. Grupo de Pesquisa em Separações por Adsorção; Brasi

    Selective Catalytic Reduction of NOx by CO over Cu(Fe)/SBA-15 Catalysts: Effects of the Metal Loading on the Catalytic Activity

    Get PDF
    Mesoporous Cu(Fe)/SBA-15 catalysts were prepared with distinct metal loadings of ca. 2–10 wt.%. A detailed set of characterizations using X-ray diffraction (XRD), electron paramagnetic resonance (EPR), transmission electron microscopy (TEM), scanning electron microscopy coupled to energy dispersive spectroscopy (SEM-EDS), Mössbauer spectroscopy, X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy was performed to correlate the relationship among structure, electronic properties and catalytic performances. All solids were evaluated in the selective catalytic reduction of NOx in the presence of CO (CO-SCR). The influence of the metal loadings on the overall activity indicated that introducing high amounts of Fe or Cu on the catalysts was beneficial to form either CuO or α-Fe2O3 clusters. Cux/SBA-15 series exhibited more efficient activity and poison-tolerant ability during CO-SCR reaction, in contrast to Fex/SBA-15. In spite of the Fe species introduced on SBA-15 having structural features similar to those of Cu ones, low interactions among Fe nanoparticles, silica and clusters impeded the high performances of Fe10/SBA-15. XPS revealed the Fe species in a more oxidized state, indicating the stability of the solid after the catalytic tests, in agreement with EPR and Raman spectroscopy. Cu8/SBA-15 worked better, being recyclable due to the interaction of the Cu2+ ions with SBA-15, avoiding the deactivation of the catalyst.The authors acknowledge the financial support by the Funcap (Grant PS1-0186-00346.01.00/21). A.C.O. and ERC thank to Ministerio de Ciencia e Innovación (Spain) projects PID2021-126235OB-C32 and TED2021-130756B-C31, and FEDER funds. Partial funding for open access charge: Universidad de Málag

    NiO diluted in high surface area TiO2 as efficient catalysts for the oxidative dehydrogenation of ethane

    Full text link
    [EN] Catalysts consisting of NiO diluted in high surface area TiO2 can be as efficient in the oxidative dehydrogenation of ethane as the most selective NiO-promoted catalysts reported previously in the literature. By selecting the titania matrix and the NiO loading, yields to ethylene over 40% have been obtained. In the present article, three different titanium oxides (TiO2) have been employed as supports or diluters of nickel oxide and have been tested in the oxidative dehydrogenation of ethane to ethylene. All TiO2 used present anatase as the main crystalline phase and different surface areas of 11,55 and 85 m(2) g(-1). It has been observed that by selecting an appropriate nickel loading and the titanium oxide extremely high selectivity towards ethylene can be obtained. Thus, nickel oxide supported on TiO2 with high surface areas (i.e. 55 and 85 m(2) g(-1)) have resulted to give the best catalytic performance although the optimal nickel loading is different for each case. The optimal catalyst has been obtained for NiO-loadings up to 5-10 theoretical monolayers regardless of the TiO2 employed. Free TiO2 is inactive whereas unsupported NiO is active and unselective (forming mainly carbon dioxide) and, therefore, unmodified NiO particles have to be avoided in order to obtain the optimal catalytic performance. The use of low surface area titania (11 m(2) g(-1)) have led to the lowest selectivity to olefin due to the presence of an excess of free NiO particles. (C) 2017 Elsevier B.V. All rights reserved.The authors would like to acknowledge the DGICYT in Spain CTQ2012-37925-C03-2, CTQ2015-68951-C3-1-R, CTQ2015-68951-C3-3-R and SEV-2012-0267 Projects for financial support. D.D. also thanks Severo Ochoa Excellence fellowship (SVP-2014-068669). We also thank the University of Valencia (UV-INV-AE-16-484416 project) and SCSIE-UV for assistanceSanchis, R.; Delgado-Muñoz, D.; Agouram, S.; Soriano Rodríguez, MD.; Vázquez, MI.; Rodriguez-Castellon, E.; Solsona, B.... (2017). NiO diluted in high surface area TiO2 as efficient catalysts for the oxidative dehydrogenation of ethane. Applied Catalysis A General. 536:18-26. https://doi.org/10.1016/j.apcata.2017.02.012S182653

    The Carnegie Supernova Project I: photometry data release of low-redshift stripped-envelope supernovae

    Full text link
    The first phase of the Carnegie Supernova Project (CSP-I) was a dedicated supernova follow-up program based at the Las Campanas Observatory that collected science data of young, low-redshift supernovae between 2004 and 2009. Presented in this paper is the CSP-I photometric data release of low-redshift stripped-envelope core-collapse supernovae. The data consist of optical (uBgVri) photometry of 34 objects, with a subset of 26 having near-infrared (YJH) photometry. Twenty objects have optical pre-maximum coverage with a subset of 12 beginning at least five days prior to the epoch of B-band maximum brightness. In the near-infrared, 17 objects have pre-maximum observations with a subset of 14 beginning at least five days prior to the epoch of J-band maximum brightness. Analysis of this photometric data release is presented in companion papers focusing on techniques to estimate host-galaxy extinction (Stritzinger et al., submitted) and the light-curve and progenitor star properties of the sample (Taddia et al., submitted). The analysis of an accompanying visual-wavelength spectroscopy sample of ~150 spectra will be the subject of a future paper.Comment: Updated a couple of small error

    Transition from Fireball to Poynting-flux-dominated Outflow in Three-Episode GRB 160625B

    Full text link
    The ejecta composition is an open question in gamma-ray bursts (GRB) physics. Some GRBs possess a quasi-thermal spectral component in the time-resolved spectral analysis, suggesting a hot fireball origin. Others show a featureless non-thermal spectrum known as the "Band" function, consistent with a synchrotron radiation origin and suggesting that the jet is Poynting-flux-dominated at the central engine and likely in the emission region as well. There are also bursts showing a sub-dominant thermal component and a dominant synchrotron component suggesting a likely hybrid jet composition. Here we report an extraordinarily bright GRB 160625B, simultaneously observed in gamma-rays and optical wavelengths, whose prompt emission consists of three isolated episodes separated by long quiescent intervals, with the durations of each "sub-burst" being \sim 0.8 s, 35 s, and 212 s, respectively. Its high brightness (with isotropic peak luminosity Lp,iso4×1053_{\rm p, iso}\sim 4\times 10^{53} erg/s) allows us to conduct detailed time-resolved spectral analysis in each episode, from precursor to main burst and to extended emission. The spectral properties of the first two sub-bursts are distinctly different, allowing us to observe the transition from thermal to non-thermal radiation between well-separated emission episodes within a single GRB. Such a transition is a clear indication of the change of jet composition from a fireball to a Poynting-flux-dominated jet.Comment: Revised version reflecting the referees' comments. 27 pages, 11 figures, 5 tables. The final edited version will appear in Nature Astronom

    The Carnegie Supernova Project-I. Optical spectroscopy of stripped-envelope supernovae

    Full text link
    We present 170 optical spectra of 35 low-redshift stripped-envelope core-collapse supernovae observed by the Carnegie Supernova Project-I between 2004 and 2009. The data extend from as early as -19 days (d) prior to the epoch of B-band maximum to +322 d, with the vast majority obtained during the so-called photospheric phase covering the weeks around peak luminosity. In addition to histogram plots characterizing the red-shift distribution, number of spectra per object, and the phase distribution of the sample, spectroscopic classification is also provided following standard criteria. The CSP-I spectra are electronically available and a detailed analysis of the data set is presented in a companion paper being the fifth and final paper of the seriesComment: Resubmitted to A&A after address referee's comments. Comments welcomed, and let us know if we missed to reference your paper

    Ecotoxicity of microplastics to freshwater biota: Considering exposure and hazard across trophic levels

    Get PDF
    In contrast to marine ecosystems, the toxicity impact of microplastics in freshwater environments is poorly understood. This contribution reviews the literature on the range of effects of microplastics across and between trophic levels within the freshwater environment, including biofilms, macrophytes, phytoplankton, invertebrates, fish and amphibians. While there is supporting evidence for toxicity in some species e.g. growth reduction for photoautotrophs, increased mortality for some invertebrates, genetic changes in amphibians, and cell internalization of microplastics and nanoplastics in fish; other studies show that it is uncertain whether microplastics can have detrimental long-term impacts on ecosystems. Some taxa have yet to be studied e.g. benthic diatoms, while only 12% of publications on microplastics in freshwater, demonstrate trophic transfer in foodwebs. The fact that just 2% of publications focus on microplastics colonized by biofilms is hugely concerning given the cascading detrimental effects this could have on freshwater ecosystem function. Multiple additional stressors including environmental change (temperature rises and invasive species) and contaminants of anthropogenic origin (antibiotics, metals, pesticides and endocrine disruptors) will likely exacerbate negative interactions between microplastics and freshwater organisms, with potentially significant damaging consequences to freshwater ecosystems and foodwebs
    corecore