332 research outputs found
Optimizing single-photon-source heralding efficiency at 1550 nm using periodically poled lithium niobate
We explore the feasibility of using high conversion-efficiency
periodically-poled crystals to produce photon pairs for photon-counting
detector calibrations at 1550 nm. The goal is the development of an appropriate
parametric down-conversion (PDC) source at telecom wavelengths meeting the
requirements of high-efficiency pair production and collection in single
spectral and spatial modes (single-mode fibers). We propose a protocol to
optimize the photon collection, noise levels and the uncertainty evaluation.
This study ties together the results of our efforts to model the single-mode
heralding efficiency of a two-photon PDC source and to estimate the heralding
uncertainty of such a source.Comment: 14 pages, 2 tables and 3 figures, final version accepted by
Metrologi
Recommended from our members
Interactions between lipid-free apolipoprotein-AI and a lipopeptide incorporating the RGDS cell adhesion motif
The interaction of a designed bioactive lipopeptide C16-GGGRGDS, comprising a hexadecyl lipid chain attached to a functional heptapeptide, with the lipid-free apoliprotein, Apo-AI, is examined. This apolipoprotein
is a major component of high density lipoprotein and it is involved in lipid metabolism and may serve as a biomarker for cardiovascular disease and Alzheimersâ disease. We find via isothermal titration calorimetry that binding between the lipopeptide and Apo-AI occurs up to a saturation condition, just above equimolar for a 10.7 ÎŒM concentration of Apo-AI. A similar value is obtained from circular dichroism spectroscopy, which probes the reduction in α-helical secondary structure of Apo-AI upon addition of C16-GGGRGDS. Electron microscopy images show a persistence of fibrillar structures due to self-assembly of C16-GGGRGDS in mixtures with Apo-AI above the saturation binding condition. A small fraction of spheroidal or possibly ânanodiscâ structures was observed. Small-angle X-ray scattering (SAXS) data for
Apo-AI can be fitted using a published crystal structure of the Apo-AI dimer. The SAXS data for the lipopeptide/
Apo-AI mixtures above the saturation binding conditions can be fitted to the contribution from fibrillar structures coexisting with flat discs corresponding to Apo-AI/lipopeptide aggregates
Towards achieving strong coupling in 3D-cavity with solid state spin resonance
We investigate the microwave magnetic field confinement in several microwave
3D-cavities, using 3D finite-element analysis to determine the best design and
achieve strong coupling between microwave resonant cavity photons and solid
state spins. Specifically, we design cavities for achieving strong coupling of
electromagnetic modes with an ensemble of nitrogen vacancy (NV) defects in
diamond. We report here a novel and practical cavity design with a magnetic
filling factor of up to 4 times (2 times higher collective coupling) than
previously achieved using 1D superconducting cavities with small mode volume.
In addition, we show that by using a double-split resonator cavity, it is
possible to achieve up to 200 times better cooperative factor than the
currently demonstrated with NV in diamond. These designs open up further
opportunities for studying strong and ultra-strong coupling effects on spins in
solids using alternative systems with a wider range of design parameters.Comment: 20 pages, 9 figure
A silicon carbide room temperature single-photon source
Over the past few years, single-photon generation has been realized in numerous systems: single molecules 1 , quantum dots 2-4 , diamond colour centres 5 and others 6 . The generation and detection of single photons play a central role in the experimental foundation of quantum mechanics 7 and measurement theory 8 . An efficient and high-quality single-photon source is needed to implement quantum key distribution, quantum repeaters and photonic quantum information processing 9 . Here we report the identification and formation of ultrabright, room-temperature, photostable single-photon sources in a device-friendly material, silicon carbide (SiC). The source is composed of an intrinsic defect, known as the carbon antisite- vacancy pair, created by carefully optimized electron irradiation and annealing of ultrapure SiC. An extreme brightness (210 6 counts s 1 ) resulting from polarization rules and a high quantum efficiency is obtained in the bulk without resorting to the use of a cavity or plasmonic structure. This may benefit future integrated quantum photonic devices 9
Experimental realization of a low-noise heralded single photon source
We present a heralded single-photon source with a much lower level of
unwanted background photons in the output channel by using the herald photon to
control a shutter in the heralded channel. The shutter is implemented using a
simple field programable gate array controlled optical switch.Comment: 4 pages, 5 figure
Reduced Deadtime and Higher Rate Photon-Counting Detection using a Multiplexed Detector Array
We present a scheme for a photon-counting detection system that can be
operated at incident photon rates higher than otherwise possible by suppressing
the effects of detector deadtime. The method uses an array of N detectors and a
1-by-N optical switch with a control circuit to direct input light to live
detectors. Our calculations and models highlight the advantages of the
technique. In particular, using this scheme, a group of N detectors provides an
improvement in operation rate that can exceed the improvement that would be
obtained by a single detector with deadtime reduced by 1/N, even if it were
feasible to produce a single detector with such a large improvement in
deadtime. We model the system for continuous and pulsed light sources, both of
which are important for quantum metrology and quantum key distribution
applications.Comment: 6 figure
Recommended from our members
Influence of elastase on alanine-rich peptide hydrogels
The self-assembly of the alanine-rich amphiphilic peptides Lys(Ala)6Lys (KA6K) and Lys(Ala)6Glu (KA6E)with homotelechelic or heterotelechelic charged termini respectively has been investigated in aqueous solution. These peptides contain hexa-alanine sequences designed to serve as substrates for the enzyme elastase. Electrostatic repulsion of the lysine termini in KA6K prevents self-assembly, whereas in contrast KA6E is observed, through electron microscopy, to form tape-like fibrils, which based on X-ray scattering contain layers of thickness equal to the molecular length. The alanine residues enable efficient packing of the side-chains in a beta-sheet structure, as revealed by circular dichroism, FTIR and X-ray diffraction
experiments. In buffer, KA6E is able to form hydrogels at sufficiently high concentration. These were used as substrates for elastase, and enzyme-induced de-gelation was observed due to the disruption of the beta-sheet fibrillar network. We propose that hydrogels of the simple designed amphiphilic peptide KA6E may serve as model substrates for elastase and this could ultimately lead to applications in biomedicine and regenerative medicine
Recommended from our members
Tuning chelation by the surfactant-like peptide A6H using predetermined pH values
We examine the self-assembly of a peptide A6H
comprising a hexa-alanine sequence A6 with a histidine (H) âhead groupâ, which chelates Zn2+ cations. We study the self assembly of A6H and binding of Zn2+ ions in ZnCl2 solutions, under acidic and neutral conditions. A6H self-assembles into nanotapes held together by a ÎČ-sheet structure in acidic aqueous solutions. By dissolving A6H in acidic ZnCl2 solutions, the carbonyl oxygen atoms in A6H chelate the Zn2+ ions and allow for ÎČ-sheet formation at lower concentrations, consequently reducing the onset concentration for nanotape formation. A6H mixed with water or ZnCl2 solutions under neutral conditions produces short sheets or pseudocrystalline tapes, respectively. The imidazole ring of A6H chelates Zn2+ ions in neutral solutions. The internal structure of nanosheets and pseudocrystalline sheets in neutral solutions is similar to the internal structure of A6H nanotapes in acidic solutions. Our results show that it is possible to induce dramatic changes in the self-assembly and chelation sites of A6H by changing the pH of the solution. However, it is likely that the amphiphilic nature of A6H determines the internal structure of the self-assembled aggregates independent from changes in chelation
Recommended from our members
Interaction between a cationic surfactant-like peptide and lipid vesicles and its relationship to antimicrobial activity
We investigate the properties of an antimicrobial
surfactant-like peptide (Ala)6(Arg), A6R, containing a
cationic headgroup. The interaction of this peptide with
zwitterionic (DPPC) lipid vesicles is investigated using a range of microscopic, X-ray scattering, spectroscopic, and calorimetric methods. The ÎČ-sheet structure adopted by A6R is disrupted in the presence of DPPC. A strong effect on the
small-angle X-ray scattering profile is observed: the Bragg
peaks from the DPPC bilayers in the vesicle walls are
eliminated in the presence of A6R and only bilayer form factor peaks are observed. All of these observations point to the interaction of A6R with DPPC bilayers. These studies provide insight into interactions between a model cationic peptide and vesicles, relevant to understanding the action of antimicrobial peptides on lipid membranes. Notably, peptide A6R exhibits antimicrobial activity without membrane lysis
Recommended from our members
Self-assembly and anti-amyloid cytotoxicity activity of amyloid beta peptide derivatives
The self-assembly of two derivatives of KLVFF, a fragment Abeta(16-20) of the amyloid beta (Abeta) peptide, is investigated and recovery of viability of neuroblastoma cells exposed to Abeta is observed at sub-stoichiometric peptide concentrations. Fluorescence assays show that NH2-KLVFF-CONH2 undergoes hydrophobic collapse and amyloid formation at the same critical aggregation concentration (cac). In contrast, NH2-K(Boc)LVFF-CONH2 undergoes hydrophobic collapse at a low concentration, followed by amyloid formation at a higher cac. These findings are supported by the beta-sheet features observed by FTIR. Electrospray ionization mass spectrometry indicates that NH2-K(Boc)LVFF-CONH2 forms a significant population of oligomeric species above the cac. Cryo-TEM, used together with SAXS to determine fibril dimensions, shows that the length and degree of twisting of peptide fibrils seem to be influenced by the net peptide charge. Grazing incidence X-ray scattering from thin peptide films shows features of beta-sheet ordering for both peptides, along with evidence for lamellar ordering of NH2-KLVFF-CONH2. This work provides a comprehensive picture of the aggregation properties of these two KLVFF derivatives and show their utility, in unaggregated form, in restoring the viability of neuroblastoma cells against Abeta-induced toxicity
- âŠ