3,552 research outputs found

    Critical Exponents of the KPZ Equation via Multi-Surface Coding Numerical Simulations

    Full text link
    We study the KPZ equation (in D = 2, 3 and 4 spatial dimensions) by using a RSOS discretization of the surface. We measure the critical exponents very precisely, and we show that the rational guess is not appropriate, and that 4D is not the upper critical dimension. We are also able to determine very precisely the exponent of the sub-leading scaling corrections, that turns out to be close to 1 in all cases. We introduce and use a {\em multi-surface coding} technique, that allow a gain of order 30 over usual numerical simulations.Comment: 10 pages, 8 eps figures (2 figures added). Published versio

    Deep-well ultrafast manipulation of a SQUID flux qubit

    Full text link
    Superconducting devices based on the Josephson effect are effectively used for the implementation of qubits and quantum gates. The manipulation of superconducting qubits is generally performed by using microwave pulses with frequencies from 5 to 15 GHz, obtaining a typical operating clock from 100MHz to 1GHz. A manipulation based on simple pulses in the absence of microwaves is also possible. In our system a magnetic flux pulse modifies the potential of a double SQUID qubit from a symmetric double well to a single deep well condition. By using this scheme with a Nb/AlOx/Nb system we obtained coherent oscillations with sub-nanosecond period (tunable from 50ps to 200ps), very fast with respect to other manipulating procedures, and with a coherence time up to 10ns, of the order of what obtained with similar devices and technologies but using microwave manipulation. We introduce the ultrafast manipulation presenting experimental results, new issues related to this approach (such as the use of a feedback procedure for cancelling the effect of "slow" fluctuations), and open perspectives, such as the possible use of RSFQ logic for the qubit control.Comment: 9 pages, 7 figure

    Artificial Neural Network based on SQUIDs: demonstration of network training and operation

    Full text link
    We propose a scheme for the realization of artificial neural networks based on Superconducting Quantum Interference Devices (SQUIDs). In order to demonstrate the operation of this scheme we designed and successfully tested a small network that implements a XOR gate and is trained by means of examples. The proposed scheme can be particularly convenient as support for superconducting applications such as detectors for astrophysics, high energy experiments, medicine imaging and so on.Comment: 10 pages, 6 figure

    Comparison of voter and Glauber ordering dynamics on networks

    Full text link
    We study numerically the ordering process of two very simple dynamical models for a two-state variable on several topologies with increasing levels of heterogeneity in the degree distribution. We find that the zero-temperature Glauber dynamics for the Ising model may get trapped in sets of partially ordered metastable states even for finite system size, and this becomes more probable as the size increases. Voter dynamics instead always converges to full order on finite networks, even if this does not occur via coherent growth of domains. The time needed for order to be reached diverges with the system size. In both cases the ordering process is rather insensitive to the variation of the degreee distribution from sharply peaked to scale-free.Comment: 12 pages, 12 figure

    Naa And Naag Variation In Neuronal Activation During Visual Stimulation.

    Get PDF
    N-acetyl-aspartyl-glutamate (NAAG) and its hydrolysis product N-acetyl-L-aspartate (NAA) are among the most important brain metabolites. NAA is a marker of neuron integrity and viability, while NAAG modulates glutamate release and may have a role in neuroprotection and synaptic plasticity. Investigating on a quantitative basis the role of these metabolites in brain metabolism in vivo by magnetic resonance spectroscopy (MRS) is a major challenge since the main signals of NAA and NAAG largely overlap. This is a preliminary study in which we evaluated NAA and NAAG changes during a visual stimulation experiment using functional MRS. The paradigm used consisted of a rest period (5 min and 20 s), followed by a stimulation period (10 min and 40 s) and another rest period (10 min and 40 s). MRS from 17 healthy subjects were acquired at 3T with TR/TE = 2000/288 ms. Spectra were averaged over subjects and quantified with LCModel. The main outcomes were that NAA concentration decreased by about 20% with the stimulus, while the concentration of NAAG concomitantly increased by about 200%. Such variations fall into models for the energy metabolism underlying neuronal activation that point to NAAG as being responsible for the hyperemic vascular response that causes the BOLD signal. They also agree with the fact that NAAG and NAA are present in the brain at a ratio of about 1:10, and with the fact that the only known metabolic pathway for NAAG synthesis is from NAA and glutamate.451031-

    Massive Star cluster formation under the microscope at z=6

    Get PDF
    We report on a superdense star-forming region with an effective radius (R_e) smaller than 13 pc identified at z=6.143 and showing a star-formation rate density \Sigma_SFR~1000 Msun/yr/kpc2 (or conservatively >300 Msun/yr/kpc2). Such a dense region is detected with S/N>40 hosted by a dwarf extending over 440 pc, dubbed D1 (Vanzella et al. 2017b). D1 is magnified by a factor 17.4+/-5.0 behind the Hubble Frontier Field galaxy cluster MACS~J0416 and elongated tangentially by a factor 13.2+/-4.0 (including the systematic errors). The lens model accurately reproduces the positions of the confirmed multiple images with a r.m.s. of 0.35", and the tangential stretch is well depicted by a giant multiply-imaged Lya arc. D1 is part of an interacting star-forming complex extending over 800 pc. The SED-fitting, the very blue ultraviolet slope (\beta ~ -2.5, F(\lambda) ~ \lambda^\beta) and the prominent Lya emission of the stellar complex imply that very young (< 10-100 Myr), moderately dust-attenuated (E(B-V)<0.15) stellar populations are present and organised in dense subcomponents. We argue that D1 (with a stellar mass of 2 x 10^7 Msun) might contain a young massive star cluster of M < 10^6 Msun and Muv~-15.6 (or m_uv=31.1), confined within a region of 13 pc, and not dissimilar from some local super star clusters (SSCs). The ultraviolet appearance of D1 is also consistent with a simulated local dwarf hosting a SSC placed at z=6 and lensed back to the observer. This compact system fits into some popular globular cluster formation scenarios. We show that future high spatial resolution imaging (e.g., E-ELT/MAORY-MICADO and VLT/MAVIS) will allow us to spatially resolve light profiles of 2-8 pc.Comment: 21 pages, 14 figures, 1 table, MNRAS accepte

    Ionising the Intergalactic Medium by Star Clusters: The first empirical evidence

    Get PDF
    We present a VLT/X-Shooter spectroscopy of the Lyman continuum (LyC) emitting galaxy 'Ion2' at z=3.2121 and compare it to that of the recently discovered strongly lensed LyC-emitter at z=2.37, known as the 'Sunburst' arc. Three main results emerge from the X-Shooter spectrum: (a) the Lya has three distinct peaks with the central one at the systemic redshift, indicating a ionised tunnel through which both Lya and LyC radiation escape; (b) the large O32 oxygen index ([OIII]4959-5007 / [OII]3727-3729) of 9.18(-1.32/+1.82) is compatible to those measured in local (z~0.4) LyC leakers; (c) there are narrow nebular high-ionisation metal lines with \sigma_v < 20 km/s, which confirms the presence of young hot, massive stars. The HeII1640 appears broad, consistent with a young stellar component including Wolf-Rayet stars. Similarly, the Sunburst LyC-emitter shows a triple-peaked Lya profile and from VLT/MUSE spectroscopy the presence of spectral features arising from young hot and massive stars. The strong lensing magnification, (\mu > 20), suggests that this exceptional object is a gravitationally-bound star cluster observed at a cosmological distance, with a stellar mass M <~ 10^7 Msun and an effective radius smaller than 20 pc. Intriguingly, sources like Sunburst but without lensing magnification might appear as Ion2-like galaxies, in which unresolved massive star clusters dominate the ultraviolet emission. This work supports the idea that dense young star clusters can contribute to the ionisation of the IGM through holes created by stellar feedback.Comment: 13 pages, 9 figures and 1 table, MNRAS accepted. Some typos fixe

    Overall time evolution in phase-ordering kinetics

    Full text link
    The phenomenology from the time of the quench to the asymptotic behavior in the phase-ordering kinetics of a system with conserved order parameter is investigated in the Bray-Humayun model and in the Cahn-Hilliard-Cook model. From the comparison of the structure factor in the two models the generic pattern of the overall time evolution, based on the sequence ``early linear - intermediate mean field - late asymptotic regime'' is extracted. It is found that the time duration of each of these regimes is strongly dependent on the wave vector and on the parameters of the quench, such as the amplitude of the initial fluctuations and the final equilibrium temperature. The rich and complex crossover phenomenology arising as these parameters are varied can be accounted for in a simple way through the structure of the solution of the Bray-Humayun model.Comment: RevTeX, 14 pages, 18 figures, to appear in Phys. Rev.

    Emergence of influential spreaders in modified rumor models

    Full text link
    The burst in the use of online social networks over the last decade has provided evidence that current rumor spreading models miss some fundamental ingredients in order to reproduce how information is disseminated. In particular, recent literature has revealed that these models fail to reproduce the fact that some nodes in a network have an influential role when it comes to spread a piece of information. In this work, we introduce two mechanisms with the aim of filling the gap between theoretical and experimental results. The first model introduces the assumption that spreaders are not always active whereas the second model considers the possibility that an ignorant is not interested in spreading the rumor. In both cases, results from numerical simulations show a higher adhesion to real data than classical rumor spreading models. Our results shed some light on the mechanisms underlying the spreading of information and ideas in large social systems and pave the way for more realistic diffusion models.Comment: 14 Pages, 6 figures, accepted for publication in Journal of Statistical Physic
    • …
    corecore