21 research outputs found
Healthcare-associated infections and antimicrobial resistance in severe acquired brain injury: a retrospective multicenter study
BackgroundRecent studies underscore that healthcare-associated infections (HAIs) and multidrug-resistant (MDR) HAIs affect rehabilitation outcomes and hospital length of stay (LOS) for severe acquired brain injury (sABI).ObjectiveThis study aimed to estimate HAI incidence in different sABI rehabilitation settings and determine risk factors and HAI impact on neuromotor and cognitive recovery.MethodsWe conducted a retrospective multicenter study in two semi-intensive units (SICUs), two high-specialty post-acute units (PAUs), and one long-term care (LTC) rehabilitation facility. Data extraction was performed by experienced clinicians, using a structured Excel file and they agreed upon criteria for case definitions of healthcare. The main outcome measures were the HAI and MDR HAI incidence and the LOS, the functional recovery was measured using the Level of Cognitive Functioning and Disability Rating Scale.ResultsThere were 134 sABI participants. The calculation of the probability level was adjusted for three pairwise comparisons among settings (0.05/3 = 0.017). The HAI and MDR HAI incidences were significantly higher in SICU (3.7 and 1.3 per 100 person-days) than in other settings (LTC: 1.9, p = 0.034 and 0.5, p = 0.026; PAU: 1.2, p < 0.001 and 0.3, p < 0.001). HAI and MDR HAI risk variables included older age, an increased number of devices, and carbapenemase-producing Enterobacteriaceae (CPE) colonization, while a high prealbumin plasma value seemed to have a protective effect.ConclusionHAIs are related to longer LOS, and colonization is associated with poor prognosis and poor functional outcomes with reduced ability to achieve the cognitive capacity of self-care, employability, and independent living. The need to ensure the protection of non-colonized patients, especially those with severe disabilities on admission, is highlighted
Impact of Multidrug-Resistant Organisms on Severe Acquired Brain Injury Rehabilitation: An Observational Study
Healthcare-associated infections (HAIa) and antimicrobial resistance are expected to be the next threat to human health and are most frequent in people with severe acquired brain injury (SABI), who can be more easily colonized by multidrug-resistant organisms (MDROs). The study’s aim is to investigate the impact of MDRO colonizations and infections on SABI rehabilitation outcomes. This retrospective observational study was performed in a tertiary referral specialized rehabilitation hospital. The main outcomes were the presence of carbapenemase-producing Enterobacteriaceae (CPE) colonization, type and timing of HAI and MDRO HAI, and the number of CPE transmissions. We included 48 patients, 31% carrying CPE on admission and 33% colonized during the hospitalization. A total of 101 HAI were identified in 40 patients, with an overall incidence of 10.5/1000 patient days. Some 37% of patients had at least one MDRO infection, with a MDRO infection incidence of 2.8/1000 patient days. The number of HAIs was significantly correlated with the length of stay (LOS) (r = 0.453, p = 0.001). A significant correlation was found between colonization and type of hospital room (p = 0.013). Complications and HAI significantly affected LOS. We suggest that CPE carriers might be at risk of HAI and worse outcomes compared with non-CPE carriers
Correlation between hypo-pituitarism and poor cognitive function using neuropsychological tests after aneurysmal subarachnoid haemorrhage: A pilot study
Hypopituitarism seems to be rather common following aneurysmal subarachnoid haemorrhage (aSAH), even though its real prevalence remains unclear and the effects on six-month patient functional outcomes are debatable. This study correlated hypopituitarism after aSAH and cognitive performances using neuropsychological tests
Guillain-Barr\ue9 syndrome and COVID-19: an observational multicentre study from two Italian hotspot regions
Objective: Single cases and small series of Guillain-Barr\ue9 syndrome (GBS) have been reported during the SARS-CoV-2 outbreak worldwide. We evaluated incidence and clinical features of GBS in a cohort of patients from two regions of northern Italy with the highest number of patients with COVID-19. Methods: GBS cases diagnosed in 12 referral hospitals from Lombardy and Veneto in March and April 2020 were retrospectively collected. As a control population, GBS diagnosed in March and April 2019 in the same hospitals were considered. Results: Incidence of GBS in March and April 2020 was 0.202/100 000/month (estimated rate 2.43/100 000/year) vs 0.077/100 000/month (estimated rate 0.93/100 000/year) in the same months of 2019 with a 2.6-fold increase. Estimated incidence of GBS in COVID-19-positive patients was 47.9/100 000 and in the COVID-19-positive hospitalised patients was 236/100 000. COVID-19-positive patients with GBS, when compared with COVID-19-negative subjects, showed lower MRC sum score (26.3\ub118.3 vs 41.4\ub114.8, p=0.006), higher frequency of demyelinating subtype (76.6% vs 35.3%, p=0.011), more frequent low blood pressure (50% vs 11.8%, p=0.017) and higher rate of admission to intensive care unit (66.6% vs 17.6%, p=0.002). Conclusions: This study shows an increased incidence of GBS during the COVID-19 outbreak in northern Italy, supporting a pathogenic link. COVID-19-associated GBS is predominantly demyelinating and seems to be more severe than non-COVID-19 GBS, although it is likely that in some patients the systemic impairment due to COVID-19 might have contributed to the severity of the whole clinical picture
Guillain-Barré syndrome and COVID-19: A 1-year observational multicenter study
Background and purpose Many single cases and small series of Guillain-Barre syndrome (GBS) associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection were reported during the coronavirus disease 19 (COVID-19) outbreak worldwide. However, the debate regarding the possible role of infection in causing GBS is still ongoing. This multicenter study aimed to evaluate epidemiological and clinical findings of GBS diagnosed during the COVID-19 pandemic in northeastern Italy in order to further investigate the possible association between GBS and COVID-19. Methods Guillain-Barre syndrome cases diagnosed in 14 referral hospitals from northern Italy between March 2020 and March 2021 were collected and divided into COVID-19-positive and COVID-19-negative. As a control population, GBS patients diagnosed in the same hospitals from January 2019 to February 2020 were considered. Results The estimated incidence of GBS in 2020 was 1.41 cases per 100,000 persons/year (95% confidence interval 1.18-1.68) versus 0.89 cases per 100,000 persons/year (95% confidence interval 0.71-1.11) in 2019. The cumulative incidence of GBS increased by 59% in the period March 2020-March 2021 and, most importantly, COVID-19-positive GBS patients represented about 50% of the total GBS cases with most of them occurring during the two first pandemic waves in spring and autumn 2020. COVID-19-negative GBS cases from March 2020 to March 2021 declined by 22% compared to February 2019-February 2020. Conclusions Other than showing an increase of GBS in northern Italy in the "COVID-19 era" compared to the previous year, this study emphasizes how GBS cases related to COVID-19 represent a significant part of the total, thus suggesting a relation between COVID-19 and GBS
Abstracts from the 23rd Italian congress of Cystic Fibrosis and the 13th National congress of Cystic Fibrosis Italian Society
Cystic Fibrosis (CF) occurs most frequently in caucasian populations. Although less common, this disorder have been reported in all the ethnicities. Currently, there are more than 2000 described sequence variations in CFTR gene, uniformly distributed and including variants pathogenic and benign (CFTR1:www.genet.sickkids.on.ca/). To date,only a subset have been firmily established as variants annotated as disease-causing (CFTR2: www.cftr2.org). The spectrum and the frequency of individual CFTR variants, however, vary among specific ethnic groups and geographic areas. Genetic screening for CF with standard panels of CFTR mutations is widely used for the diagnosis of CF in newborns and symptomatic patients, and to diagnose CF carrier status. These screening panels have an high diagnostic sensitivity (around 85%) for CFTR mutations in caucasians populations but very low for non caucasians. Developed in the last decade, Next-Generation Sequencing (NGS) has been the last breakthrough technology in genetic studies with a substantial reduction in cost per sequenced base and a considerable enhancement of the sequence generation capabilities. Extended CFTR gene sequencing in NGS includes all the coding regions, the splicing sites and their flankig intronic regions, deep intronic regions where are localized known mutations,the promoter and the 5'-3' UTR regions. NGS allows the analysis of many samples concurrently in a shorter period of time compared to Sanger method . Moreover, NGS platforms are able to identify CFTR copy number variation (CNVs), not detected by Sanger sequencing.
This technology has provided new and reliable approaches to molecular diagnosis of CF and CFTR-Related Disorders. It also allows to improve the diagnostic sensitivity of newborn and carrier screeningmolecular tests. In fact, bioinformatics tools suitable for all the NGS platforms can filter data generated from the gene sequencing, and
analyze only mutations with well-established disease liability. This approach allows the development of targeted mutations panels with a higher number of frequent CF mutations for the target populationcompared to the standard panels and a consequent enhancement of the diagnostic sensitivity. Moreover, in the emerging challenge of diagnosing CF in non caucasians patients, the possibility of customize a NGS targeted mutations panel should increase the diagnostic sensitivity when the target
population has different ethnicities
Plankton dynamics across the freshwater, transitional and marine research sites of the LTER-Italy Network. Patterns, fluctuations, drivers
A first synoptic and trans-domain overview of plankton dynamics was conducted across the aquatic sites belonging to the Italian Long-Term Ecological Research Network (LTER-Italy). Based on published studies, checked and complemented with unpublished information, we investigated phytoplankton and zooplankton annual dynamics and long-term changes across domains: from the large subalpine lakes to mountain lakes and artificial lakes, from lagoons to marine coastal ecosystems. This study permitted identifying common and unique environmental drivers and ecological functional processes controlling seasonal and long-term temporal course. The most relevant patterns of plankton seasonal succession were revealed, showing that the driving factors were nutrient availability, stratification regime, and freshwater inflow. Phytoplankton and mesozooplankton displayed a wide interannual variability at most sites. Unidirectional or linear long-term trends were rarely detected but all sites were impacted across the years by at least one, but in many case several major stressor(s): nutrient inputs, meteo-climatic variability at the local and regional scale, and direct human activities at specific sites. Different climatic and anthropic forcings frequently co-occurred, whereby the responses of plankton communities were the result of this environmental complexity. Overall, the LTER investigations are providing an unparalleled framework of knowledge to evaluate changes in the aquatic pelagic systems and management options