150 research outputs found

    Spontaneous Cardiomyocyte Differentiation From Adipose Tissue Stroma Cells

    Get PDF
    Cardiomyocyte regeneration is limited in adult life. Thus, the identification of a putative source of cardiomyocyte progenitors is of great interest to provide a usable model in vitro and new perspective in regenerative therapy. As adipose tissues were recently demonstrated to contain pluripotent stem cells, the emergence of cardiomyocyte phenotype from adipose-derived cells was investigated. We demonstrated that rare beating cells with cardiomyocyte features could be identified after culture of adipose stroma cells without addition of 5-azacytidine. The cardiomyocyte phenotype was first identified by morphological observation, confirmed with expression of specific cardiac markers, immunocytochemistry staining, and ultrastructural analysis, revealing the presence of ventricle- and atrial-like cells. Electrophysiological studies performed on early culture revealed a pacemaker activity of the cells. Finally, functional studies showed that adrenergic agonist stimulated the beating rate whereas cholinergic agonist decreased it. Taken together, this study demonstrated that functional cardiomyocyte- like cells could be directly obtained from adipose tissue. According to the large amount of this tissue in adult mammal, it could represent a useful source of cardiomyocyte progenitors.Garcia Verdugo, Jose Manuel, [email protected]

    Mitochondrial Reactive Oxygen Species Are Obligatory Signals for Glucose-Induced Insulin Secretion

    Get PDF
    OBJECTIVE—Insulin secretion involves complex events in which the mitochondria play a pivotal role in the generation of signals that couple glucose detection to insulin secretion. Studies on the mitochondrial generation of reactive oxygen species (ROS) generally focus on chronic nutrient exposure. Here, we investigate whether transient mitochondrial ROS production linked to glucose-induced increased respiration might act as a signal for monitoring insulin secretion

    Biological validation of coenzyme Q redox state by HPLC-EC measurement: relationship between coenzyme Q redox state and coenzyme Q content in rat tissues

    Get PDF
    AbstractThe properties of coenzymes Q (CoQ9 and CoQ10) are closely linked to their redox state (CoQox/total CoQ)×100. In this work, CoQ redox state was biologically validated by high performance liquid chromatography-electrochemical measurement after modulation of mitochondrial electron flow of cultured cells by molecules increasing (rotenone, carbonyl cyanide chlorophenylhydrazone) or decreasing (antimycin) CoQ oxidation. The tissue specificity of CoQ redox state and content were investigated in control and hypoxic rats. In control rats, there was a strong negative linear regression between tissular CoQ redox state and CoQ content. Hypoxia increased CoQ9 redox state and decreased CoQ9 content in a negative linear relationship in the different tissues, except the heart and lung. This result demonstrates that, under conditions of mitochondrial impairment, CoQ redox control is tissue-specific

    Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: A joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT)

    Get PDF
    Adipose tissue is a rich and very convenient source of cells for regenerative medicine therapeutic approaches. However, a characterization of the population of adipose-derived stromal and stem cells (ASCs) with the greatest therapeutic potential remains unclear. Under the authority of International Federation of Adipose Therapeutics and International Society for Cellular Therapy, this paper sets out to establish minimal definitions of stromal cells both as uncultured stromal vascular fraction (SVF) and as an adherent stromal/stem cells population.Phenotypic and functional criteria for the identification of adipose-derived cells were drawn from the literature.In the SVF, cells are identified phenotypically by the following markers: CD45-CD235a-CD31-CD34+. Added value may be provided by both a viability marker and the following surface antigens: CD13, CD73, CD90 and CD105. The fibroblastoid colony-forming unit assay permits the evaluation of progenitor frequency in the SVF population. In culture, ASCs retain markers in common with other mesenchymal stromal/stem cells (MSCs), including CD90, CD73, CD105, and CD44 and remain negative for CD45 and CD31. They can be distinguished from bone-marrow-derived MSCs by their positivity for CD36 and negativity for CD106. The CFU-F assay is recommended to calculate population doublings capacity of ASCs. The adipocytic, chondroblastic and osteoblastic differentiation assays serve to complete the cell identification and potency assessment in conjunction with a quantitative evaluation of the differentiation either biochemically or by reverse transcription polymerase chain reaction.The goal of this paper is to provide initial guidance for the scientific community working with adipose-derived cells and to facilitate development of international standards based on reproducible parameters.Background aims: Adipose tissue is a rich and very convenient source of cells for regenerative medicine therapeutic approaches. However, a characterization of the population of adipose-derived stromal and stem cells (ASCs) with the greatest therapeutic potential remains unclear. Under the authority of International Federation of Adipose Therapeutics and International Society for Cellular Therapy, this paper sets out to establish minimal definitions of stromal cells both as uncultured stromal vascular fraction (SVF) and as an adherent stromal/stem cells population. Methods: Phenotypic and functional criteria for the identification of adipose-derived cells were drawn from the literature. Results: In the SVF, cells are identified phenotypically by the following markers: CD45-CD235a-CD31-CD34+. Added value may be provided by both a viability marker and the following surface antigens: CD13, CD73, CD90 and CD105. The fibroblastoid colony-forming unit assay permits the evaluation of progenitor frequency in the SVF population. In culture, ASCs retain markers in common with other mesenchymal stromal/stem cells (MSCs), including CD90, CD73, CD105, and CD44 and remain negative for CD45 and CD31. They can be distinguished from bone-marrow-derived MSCs by their positivity for CD36 and negativity for CD106. The CFU-F assay is recommended to calculate population doublings capacity of ASCs. The adipocytic, chondroblastic and osteoblastic differentiation assays serve to complete the cell identification and potency assessment in conjunction with a quantitative evaluation of the differentiation either biochemically or by reverse transcription polymerase chain reaction. Conclusions: The goal of this paper is to provide initial guidance for the scientific community working with adipose-derived cells and to facilitate development of international standards based on reproducible parameters. \ua9 2013, International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved

    Apolipoprotein O is mitochondrial and promotes lipotoxicity in heart

    Get PDF
    Diabetic cardiomyopathy is a secondary complication of diabetes with an unclear etiology. Based on a functional genomic evaluation of obesity-associated cardiac gene expression, we previously identified and cloned the gene encoding apolipoprotein O (APOO), which is overexpressed in hearts from diabetic patients. Here, we generated APOO-Tg mice, transgenic mouse lines that expresses physiological levels of human APOO in heart tissue. APOO-Tg mice fed a high-fat diet exhibited depressed ventricular function with reduced fractional shortening and ejection fraction, and myocardial sections from APOO-Tg mice revealed mitochondrial degenerative changes. In vivo fluorescent labeling and subcellular fractionation revealed that APOO localizes with mitochondria. Furthermore, APOO enhanced mitochondrial uncoupling and respiration, both of which were reduced by deletion of the N-terminus and by targeted knockdown of APOO. Consequently, fatty acid metabolism and ROS production were enhanced, leading to increased AMPK phosphorylation and Ppara and Pgc1a expression. Finally, we demonstrated that the APOO-induced cascade of events generates a mitochondrial metabolic sink whereby accumulation of lipotoxic byproducts leads to lipoapoptosis, loss of cardiac cells, and cardiomyopathy, mimicking the diabetic heart-associated metabolic phenotypes. Our data suggest that APOO represents a link between impaired mitochondrial function and cardiomyopathy onset, and targeting APOO-dependent metabolic remodeling has potential as a strategy to adjust heart metabolism and protect the myocardium from impaired contractility

    Human adipose derived stroma/stem cells grow in serum-free medium as floating spheres,”

    Get PDF
    With the goal of obtaining clinically safe human adipose-derived stroma/stem cells (ASC) and eliminating the use of serum, we have developed a new culture system that allows the expansion of ASC as spheres in a defined medium. These spheres can be passaged several times. They are not only aggregated cells but rather originate from single cells as clonal spheres can be obtained after seeding at very low density and reform clonal spheres after dissociation. These spheres can also revert to monolayer growth when plated in medium containing human plasma and even generate fibroblast-like colonies (CFU-f). Under several differentiation-specific media, spheresderived ASC maintain their capacity to differentiate into osteoblasts, endothelial cells and adipocytes. These results indicate that human ASC can be maintained in a serum-free 3D culture system, which is of great interest for the expansion in bioreactors of autologous ASC and their use in clinical trials

    Enhanced Hypothalamic Glucose Sensing in Obesity: Alteration of Redox Signaling

    Get PDF
    1939-327X (Electronic) Journal articleObjective : Recent data demonstrate that glucose sensing in different tissues is initiated by an intracellular redox-signaling pathway in physiological conditions. However, the relevance of such a mechanism in metabolic disease is not known. The aim of the present study was to determine whether brain-glucose hypersensitivity present in obese Zucker rat is related to an alteration in redox signaling. Research design and Methods: Brain glucose sensing alteration was investigated in vivo through the evaluation of electrical activity in arcuate nucleus, changes in ROS levels, and hypothalamic glucose-induced insulin secretion. In basal conditions, modifications of redox state and mitochondrial function were assessed through oxidized glutathione, glutathione peroxidase, manganese superoxide dismutase, aconitase activities and mitochondrial respiration. Results : Hypothalamic hypersensitivity to glucose was characterized by enhanced electrical activity of the arcuate nucleus and increased insulin secretion at a low glucose concentration, which does not produce such an effect in normal rats. It was associated with 1) increased ROS levels in response to this low glucose load, 2) constitutive oxidized environment coupled with lower antioxidant enzyme activity at both the cellular and mitochondrial level, and 3) over-expression of several mitochondrial subunits of the respiratory chain coupled with a global dysfunction in mitochondrial activity. Moreover, pharmacological restoration of the glutathione hypothalamic redox state by reduced-glutathione infusion in the third ventricle fully reversed the cerebral hypersensitivity to glucose. Conclusions : Altogether, these data demonstrate that obese Zucker rats' impaired hypothalamic regulation in terms of glucose sensing is linked to an abnormal redox signaling, which originates from mitochondria dysfunction
    • 

    corecore