20 research outputs found

    Risk factors for postoperative depression in 150 subjects treated for drug-resistant focal epilepsy.

    Get PDF
    Objective.The primary goal was to identify risk factors for post-surgical depression in subjects operated on for drug-resistant epilepsy. Secondary goals were to confirm the high rate of depression in subjects suffering from epilepsy (prior to surgery) and to look for first post-surgical depressive episode.Methods.Case series study of 150 subjects surgically treated for partial epilepsy (side of surgery: 72 right, 78 left; site of surgery: 97 Unilobar Temporal, 17 Unilobar Frontal, 14 Posterior, 22 Multilobar). All subjects routinely had three psychiatric evaluations: before surgery (baseline) and at 6 and 12 months after surgery. Psychiatric diagnoses were made according to DSM-IV-TR criteria. Bivariate (Fisher exact test and Kruskal–Wallis rank sum test) and multivariate (logistic regression model fitting) analyses were performed.Results.Thirty-three (22%) subjects had post-surgical depressive episodes, 31 of them in the first 6 months. Fourteen out of 33 experienced depression for the first time. Post-surgical depressive episodes are not associated with gender, outcome on seizures, side/site of surgical resection, histological diagnosis, psychiatric diagnoses other than depression. Depressive episodes before surgery and older age at surgery time are risk factors for post-surgical depression (p = 0.0001 and 0.01, respectively, at logistic regression analysis). No protective factors were identified.Conclusions.Our data show that lifetime depressive episodes and older age at surgery time are risk factors for post-surgery depression. Moreover, a prospective study could be useful in order to assess whether depression is really a consequence of surgery

    A new tool for touch-free patient registration for robot-assisted intracranial surgery: Application accuracy from a phantom study and a retrospective surgical series

    Get PDF
    OBJECTIVE The purpose of this study was to compare the accuracy of Neurolocate frameless registration system and frame-based registration for robotic stereoelectroencephalography (SEEG). METHODS The authors performed a 40-trajectory phantom laboratory study and a 127-trajectory retrospective analysis of a surgical series. The laboratory study was aimed at testing the noninferiority of the Neurolocate system. The analysis of the surgical series compared Neurolocate-based SEEG implantations with a frame-based historical control group. RESULTS The mean localization errors (LE) ± standard deviations (SD) for Neurolocate-based and frame-based trajectories were 0.67 ± 0.29 mm and 0.76 ± 0.34 mm, respectively, in the phantom study (p = 0.35). The median entry point LE was 0.59 mm (interquartile range [IQR] 0.25-0.88 mm) for Neurolocate-registration-based trajectories and 0.78 mm (IQR 0.49-1.08 mm) for frame-registration-based trajectories (p = 0.00002) in the clinical study. The median target point LE was 1.49 mm (IQR 1.06-2.4 mm) for Neurolocate-registration-based trajectories and 1.77 mm (IQR 1.25-2.5 mm) for frameregistration- based trajectories in the clinical study. All the surgical procedures were successful and uneventful. CONCLUSIONS The results of the phantom study demonstrate the noninferiority of Neurolocate frameless registration. The results of the retrospective surgical series analysis suggest that Neurolocate-based procedures can be more accurate than the frame-based ones. The safety profile of Neurolocate-based registration should be similar to that of frame-based registration. The Neurolocate system is comfortable, noninvasive, easy to use, and potentially faster than other registration devices

    Thalamic and neocortical differences in the relationship between the time course of delta and sigma power during NREM sleep in humans.

    No full text
    Sleep spindles and slow waves are the hallmarks of non-rapid eye movement (NREM) sleep and are produced by the dynamic interplay between thalamic and cortical regions. Several studies in both human and animal models have focused their attention on the relationship between electroencephalographic (EEG) spindles and slow waves during NREM, using the power in the sigma and delta bands as a surrogate for the production of spindles and slow waves. A typical report is an overall inverse relationship between the time course of sigma and delta power as measured by a single correlation coefficient both within and across NREM episodes. Here we analysed stereotactically implanted intracerebral electrode (Stereo-EEG [SEEG]) recordings during NREM simultaneously acquired from thalamic and from several neocortical sites in six neurosurgical patients. We investigated the relationship between the time course of delta and sigma power and found that, although at the cortical level it shows the expected inverse relationship, these two frequency bands follow a parallel time course at the thalamic level. Both these observations were consistent across patients and across different cortical as well as thalamic regions. These different temporal dynamics at the neocortical and thalamic level are discussed, considering classical as well as more recent interpretations of the neurophysiological determinants of sleep spindles and slow waves. These findings may also help understanding the regulatory mechanisms of these fundamental sleep EEG graphoelements across different brain compartments

    Thalamic and neocortical differences in the relationship between the time course of delta and sigma power during NREM sleep in humans

    No full text
    Sleep spindles and slow waves are the hallmarks of non-rapid eye movement (NREM) sleep and are produced by the dynamic interplay between thalamic and cortical regions. Several studies in both human and animal models have focused their attention on the relationship between electroencephalographic (EEG) spindles and slow waves during NREM, using the power in the sigma and delta bands as a surrogate for the production of spindles and slow waves. A typical report is an overall inverse relationship between the time course of sigma and delta power as measured by a single correlation coefficient both within and across NREM episodes. Here we analysed stereotactically implanted intracerebral electrode (Stereo-EEG [SEEG]) recordings during NREM simultaneously acquired from thalamic and from several neocortical sites in six neurosurgical patients. We investigated the relationship between the time course of delta and sigma power and found that, although at the cortical level it shows the expected inverse relationship, these two frequency bands follow a parallel time course at the thalamic level. Both these observations were consistent across patients and across different cortical as well as thalamic regions. These different temporal dynamics at the neocortical and thalamic level are discussed, considering classical as well as more recent interpretations of the neurophysiological determinants of sleep spindles and slow waves. These findings may also help understanding the regulatory mechanisms of these fundamental sleep EEG graphoelements across different brain compartments

    Stereoelectroencephalography in the presurgical evaluation of focal epilepsy: a retrospective analysis of 215 procedures.

    No full text
    International audienceOBJECTIVE: To report on indications, surgical technique, results, and morbidity of stereoelectroencephalography (SEEG) in the presurgical evaluation of patients with drug-resistant focal epilepsy. METHODS: Two-hundred fifteen stereotactic implantations of multilead intracerebral electrodes were performed in 211 patients (4 patients were explored twice), who showed variable patterns of localizing incoherence among electrical (interictal/ictal scalp electroencephalography), clinical (ictal semeiology), and anatomic (magnetic resonance imaging [MRI]) investigations. MRI scanning showed a lesion in 134 patients (63%; associated with mesial temporal sclerosis in 7) and no lesion in 77 patients (37%; with mesial temporal sclerosis in 14 patients). A total of 2666 electrodes (mean, 12.4 per patient) were implanted (unilaterally in 175 procedures and bilaterally in 40). For electrode targeting, stereotactic stereoscopic cerebral angiograms were used in all patients, coupled with a coregistered three-dimensional MRI scan in 108 patients. RESULTS: One hundred eighty-three patients (87%) were scheduled for resective surgery after SEEG recording, and 174 have undergone surgery thus far. Resections sites were temporal in 47 patients (27%), frontal in 55 patients (31.6%), parietal in 14 patients (8%), occipital in one patient (0.6%), rolandic in one patient (0.6%), and multilobar in 56 patients (32.2%). Outcome on seizures (Engel's classification) in 165 patients with a follow-up period of more than 12 months was: Class I, 56.4%; Class II, 15.1%; Class III, 10.9%; and Class IV, 17.6%. Outcome was significantly associated with the results of MRI scanning (P = 0.0001) and with completeness of lesion removal (P = 0.038). Morbidity related to electrode implantation occurred in 12 procedures (5.6%), with severe permanent deficits from intracerebral hemorrhage in 2 (1%) patients. CONCLUSION: SEEG is a useful and relatively safe tool in the evaluation of surgical candidates when noninvasive investigations fail to localize the epileptogenic zone. SEEG-based resective surgery may provide excellent results in particularly complex drug-resistant epilepsies

    Stereoelectroencephalography in the presurgical evaluation of focal epilepsy: a retrospective analysis of 215 procedures.

    No full text
    International audienceOBJECTIVE: To report on indications, surgical technique, results, and morbidity of stereoelectroencephalography (SEEG) in the presurgical evaluation of patients with drug-resistant focal epilepsy. METHODS: Two-hundred fifteen stereotactic implantations of multilead intracerebral electrodes were performed in 211 patients (4 patients were explored twice), who showed variable patterns of localizing incoherence among electrical (interictal/ictal scalp electroencephalography), clinical (ictal semeiology), and anatomic (magnetic resonance imaging [MRI]) investigations. MRI scanning showed a lesion in 134 patients (63%; associated with mesial temporal sclerosis in 7) and no lesion in 77 patients (37%; with mesial temporal sclerosis in 14 patients). A total of 2666 electrodes (mean, 12.4 per patient) were implanted (unilaterally in 175 procedures and bilaterally in 40). For electrode targeting, stereotactic stereoscopic cerebral angiograms were used in all patients, coupled with a coregistered three-dimensional MRI scan in 108 patients. RESULTS: One hundred eighty-three patients (87%) were scheduled for resective surgery after SEEG recording, and 174 have undergone surgery thus far. Resections sites were temporal in 47 patients (27%), frontal in 55 patients (31.6%), parietal in 14 patients (8%), occipital in one patient (0.6%), rolandic in one patient (0.6%), and multilobar in 56 patients (32.2%). Outcome on seizures (Engel's classification) in 165 patients with a follow-up period of more than 12 months was: Class I, 56.4%; Class II, 15.1%; Class III, 10.9%; and Class IV, 17.6%. Outcome was significantly associated with the results of MRI scanning (P = 0.0001) and with completeness of lesion removal (P = 0.038). Morbidity related to electrode implantation occurred in 12 procedures (5.6%), with severe permanent deficits from intracerebral hemorrhage in 2 (1%) patients. CONCLUSION: SEEG is a useful and relatively safe tool in the evaluation of surgical candidates when noninvasive investigations fail to localize the epileptogenic zone. SEEG-based resective surgery may provide excellent results in particularly complex drug-resistant epilepsies

    Comparison of two techniques to postoperatively localize the electrode contacts used for subthalamic nucleus stimulation.

    No full text
    International audienceOBJECTIVE: Cerebral ventriculography (Vg) and magnetic resonance imaging (MRI) scanning are routine procedures to determine the implanted electrode placement into the subthalamic nucleus (STN) and are used in several centers that provide deep brain stimulation for Parkinson's disease patients. However, because of image distortion, MRI scan accuracy in determining electrode placement is still matter of debate. The objectives of this study were to verify the expected localization of the electrode contacts within the STN and to compare the stereotactic coordinates of these contacts determined intraoperatively by Vg with those calculated postoperatively by MRI scans. To our knowledge, this is the first study attempting to compare the "gold standard" of stereotactic accuracy (Vg) with the anatomic resolution provided by MRI scans. METHODS: Images from 18 patients with Parkinson's disease who underwent bilateral operation were used in this study. Among the 36 chronically stimulated contacts, 28 contacts (78%) were localized in the dorsolateral part of the STN. The remaining eight contacts (22%) were located more dorsally in the zona incerta, close to the upper border of the STN. RESULTS: Significant differences were found between Vg and MRI scans regarding the mediolateral x coordinate of the contacts for both left and right electrodes and regarding the right-sided anteroposterior y coordinate. No statistical difference was found for the left-sided y coordinate and the dorsoventral z coordinate for both sides. CONCLUSION: If we assume that Vg is an imaging gold standard, our results suggest that postoperative MRI scanning may induce a slight image translation compared with Vg. However, MRI scans allowed localization of most of the contacts within the STN

    SEEG re-exploration in a patient with complex frontal epilepsy with rapid perisylvian propagation and mixed "startle - reflex" seizures

    No full text
    International audienceThe SEEG International Course, organised in 2017, focused on the investigation and surgery of insulo-perisylvian epilepsies. We present one representative complex case that was discussed. The patient had seizures displaying startle/reflex components. He was MRI negative, while other non-invasive investigations offered only partially concordant data. Initial SEEG exploration resulted in an incomplete definition of the epileptogenic zone. A second SEEG followed, which led to a thorough assessment of the seizure onset zone and the epileptic network, localised to the lateral inferior premotor cortex, explaining the incongruent data obtained beforehand. This was the basis of a tailored resection with a favourable outcome. The patient has been seizure-free for five years without any motor nor cognitive deficits, but with pharmacodependence to one AED. The electroclinical reasoning is presented, accompanied by relevant commentaries and recommendations from the tutors [Published with video sequences]
    corecore