111 research outputs found

    The map-1 Gene Family in Root-Knot Nematodes, Meloidogyne spp.: A Set of Taxonomically Restricted Genes Specific to Clonal Species

    Get PDF
    Taxonomically restricted genes (TRGs), i.e., genes that are restricted to a limited subset of phylogenetically related organisms, may be important in adaptation. In parasitic organisms, TRG-encoded proteins are possible determinants of the specificity of host-parasite interactions. In the root-knot nematode (RKN) Meloidogyne incognita, the map-1 gene family encodes expansin-like proteins that are secreted into plant tissues during parasitism, thought to act as effectors to promote successful root infection. MAP-1 proteins exhibit a modular architecture, with variable number and arrangement of 58 and 13-aa domains in their central part. Here, we address the evolutionary origins of this gene family using a combination of bioinformatics and molecular biology approaches. Map-1 genes were solely identified in one single member of the phylum Nematoda, i.e., the genus Meloidogyne, and not detected in any other nematode, thus indicating that the map-1 gene family is indeed a TRG family. A phylogenetic analysis of the distribution of map-1 genes in RKNs further showed that these genes are specifically present in species that reproduce by mitotic parthenogenesis, with the exception of M. floridensis, and could not be detected in RKNs reproducing by either meiotic parthenogenesis or amphimixis. These results highlight the divergence between mitotic and meiotic RKN species as a critical transition in the evolutionary history of these parasites. Analysis of the sequence conservation and organization of repeated domains in map-1 genes suggests that gene duplication(s) together with domain loss/duplication have contributed to the evolution of the map-1 family, and that some strong selection mechanism may be acting upon these genes to maintain their functional role(s) in the specificity of the plant-RKN interactions

    Genome-wide survey and analysis of microsatellites in nematodes, with a focus on the plant-parasitic species Meloidogyne incognita

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microsatellites are the most popular source of molecular markers for studying population genetic variation in eukaryotes. However, few data are currently available about their genomic distribution and abundance across the phylum Nematoda. The recent completion of the genomes of several nematode species, including <it>Meloidogyne incognita</it>, a major agricultural pest worldwide, now opens the way for a comparative survey and analysis of microsatellites in these organisms.</p> <p>Results</p> <p>Using MsatFinder, the total numbers of 1-6 bp perfect microsatellites detected in the complete genomes of five nematode species (<it>Brugia malayi</it>, <it>Caenorhabditis elegans</it>, <it>M. hapla</it>, <it>M. incognita</it>, <it>Pristionchus pacificus</it>) ranged from 2,842 to 61,547, and covered from 0.09 to 1.20% of the nematode genomes. Under our search criteria, the most common repeat motifs for each length class varied according to the different nematode species considered, with no obvious relation to the AT-richness of their genomes. Overall, (AT)<sub><it>n</it></sub>, (AG)<sub><it>n </it></sub>and (CT)<sub><it>n </it></sub>were the three most frequent dinucleotide microsatellite motifs found in the five genomes considered. Except for two motifs in <it>P. pacificus</it>, all the most frequent trinucleotide motifs were AT-rich, with (AAT)<sub><it>n </it></sub>and (ATT)<sub><it>n </it></sub>being the only common to the five nematode species. A particular attention was paid to the microsatellite content of the plant-parasitic species <it>M. incognita</it>. In this species, a repertoire of 4,880 microsatellite loci was identified, from which 2,183 appeared suitable to design markers for population genetic studies. Interestingly, 1,094 microsatellites were identified in 801 predicted protein-coding regions, 99% of them being trinucleotides. When compared against the InterPro domain database, 497 of these CDS were successfully annotated, and further assigned to Gene Ontology terms.</p> <p>Conclusions</p> <p>Contrasted patterns of microsatellite abundance and diversity were characterized in five nematode genomes, even in the case of two closely related <it>Meloidogyne </it>species. 2,245 di- to hexanucleotide loci were identified in the genome of <it>M. incognita</it>, providing adequate material for the future development of a wide range of microsatellite markers in this major plant parasite.</p

    Taxonomia integrativa de Meloidogyne ottersoni (Thorne,1969) Franklin, 1971 (Nematoda: Meloidogynidae) parasitando arroz irrigado no Brasil).

    Get PDF
    bitstream/item/225459/1/Boletim-meloydogene-372f21.pd

    Breakdown of phylogenetic signal: a survey of microsatellite densities in 454 shotgun sequences from 154 non model Eukaryote species

    Get PDF
    Microsatellites are ubiquitous in Eukaryotic genomes. A more complete understanding of their origin and spread can be gained from a comparison of their distribution within a phylogenetic context. Although information for model species is accumulating rapidly, it is insufficient due to a lack of species depth, thus intragroup variation is necessarily ignored. As such, apparent differences between groups may be overinflated and generalizations cannot be inferred until an analysis of the variation that exists within groups has been conducted. In this study, we examined microsatellite coverage and motif patterns from 454 shotgun sequences of 154 Eukaryote species from eight distantly related phyla (Cnidaria, Arthropoda, Onychophora, Bryozoa, Mollusca, Echinodermata, Chordata and Streptophyta) to test if a consistent phylogenetic pattern emerges from the microsatellite composition of these species. It is clear from our results that data from model species provide incomplete information regarding the existing microsatellite variability within the Eukaryotes. A very strong heterogeneity of microsatellite composition was found within most phyla, classes and even orders. Autocorrelation analyses indicated that while microsatellite contents of species within clades more recent than 200 Mya tend to be similar, the autocorrelation breaks down and becomes negative or non-significant with increasing divergence time. Therefore, the age of the taxon seems to be a primary factor in degrading the phylogenetic pattern present among related groups. The most recent classes or orders of Chordates still retain the pattern of their common ancestor. However, within older groups, such as classes of Arthropods, the phylogenetic pattern has been scrambled by the long independent evolution of the lineages.Emese Meglécz, Gabriel Nève, Ed Biffin and Michael G. Gardne

    Intentions on desired length of stay among immigrants in Italy

    Get PDF
    Abstract The decision to emigrate from the country of origin may not be a permanent one: migrants can decide to return home or to emigrate to a third country. This phenomenon, established for some time in certain other European countries, has become an important one for Italy only recently. This paper contributes to the knowledge of migrants’ intentions in two ways: on the one hand, it analyses the factors associated with indecision about future plans; on the other, it focuses on the desired length of stay and its relationship with attachments (family, economic, socio-cultural and psychological) to host and home country. We used two logistic regression models: one for migrants’ indecision and the other for migrants’ desired length of stay. The data were collected by survey, coordinated by the ISMU Foundation and conducted in 2008 and 2009 with more than 12,000 migrants living in Italy. According to our results, indecision seems to be associated with an intermediate phase of migration at the early stage of family development in the case of negative balance of the migration experience, while attachment to the host country is associated with longer stay, and no attachments or attachment to the country of origin are associated with shorter stay
    corecore