222 research outputs found

    Effect of the Diversity of Forests on Their Resistance to native and Alien Insect Pests

    Get PDF
    In view of the technical, economic and environmental problems raised by curative control of insect pests, greater attention should be paid to developing prevention of entomological risks in forests. An increasing number of meta-analyses and empirical studies suggest that mixed forests suffer less damage from insects than pure forests in a temperate environment. Several mechanisms explain this “associational resistance” (of forest species). The presence of non-host species in mixed forests brings about a decrease in the host tree resource, reduces their accessibility and may alter their traits limiting their colonisation and exploitation by the insect pest. Furthermore, forest species biodiversity leads to an increase in the resource and to habitats that are favourable to the natural enemies of pests and therefore to an improvement in their predatory efficiency. Rather than the wealth of species in a mixed forest, it is more the identity and relative proportions of the various species in the mix that impact their resistance to herbivores. These ecological processes based on the concept of associational resistance could be taken into account to develop alternative silvicultural practices for preserving forest health in the long term

    Recovery of moth and butterfly (Lepidoptera) communities in a polluted region following emission decline

    Get PDF
    Environmental pollution is one of the major drivers of the present-day decline in global biodiversity. However, the links between the effects of industrial pollution on insect communities and the underlying species-specific responses remain poorly understood. We explored the spatial pattern in insect communities by analysing 581 samples of moths and butterflies (containing 25,628 individuals of 345 species) collected along a strong pollution gradient in subarctic Russia, and we recorded temporal changes in these communities during the pollution decline that occurred from 1992 to 2006. In the 1990s, the diversity of the Lepidoptera community was positively correlated with the distance from the copper-nickel smelter at Monchegorsk. The overall abundance of Lepidoptera did not change along the pollution gradient, although the abundance of many species decreased with increasing pollution. The responses of each individual species to pollution were associated with its life history traits. The abundances of monophagous species that fed inside live plant tissues and hibernated as imagoes or pupae were not affected by pollution, whereas the abundances of oligophagous and polyphagous species that fed externally on plants and hibernated as larvae generally declined near the smelter. Substantial decreases in aerial emissions from the smelter between 1992 and 2006 resulted in an increase in the diversity of moths and butterflies in severely polluted habitats, whereas their overall abundance did not change. This recovery of the Lepidoptera community occurred due to the reappearance of rare species that had been previously extirpated by pollution and was observed despite the lack of any signs of recovery of the vegetation in the heavily polluted sites. We conclude that the recovery trajectories of insect communities following emission control can be predicted from studies of their changes along spatial pollution gradients by using space-for-time substitution.</p

    Associational resistance to a pest insect fades with time

    Get PDF
    Tree diversity is one of the drivers of forest resistance to herbivores. Most of the current understanding of the diversity resistance relationship comes primarily from short-term studies. Knowing whether tree diversity effects on herbivores are maintained over time is important for perennial ecosystems like forests. We addressed the temporal dynamics of the diversity resistance relationship by conducting a 6-year survey of pine attacks by the pine processionary moth Thaumetopoea pityocampa (PPM) in a tree diversity experiment where we could disentangle tree composition from host density effects. During the first years after planting the trees, PPM attacks on maritime pine Pinus pinaster were reduced in the presence ofbirch Betula pendula, a fast-growing non-host tree (i.e. associational resistance). This effect was maintained but faded with time as the pines eventually grew taller than neighbouring birches. The number of repeated attacks on individual pine trees also decreased in mixed pine–birch stands. Pine density had a positive effect on stand colonisation by PPM and a negative effect on the proportion of trees that were attacked. Pines were less likely to be repeatedly attacked as pine density increased, with attacks being spread over a larger number of host trees. Collectively, these results unravel the independent contributionof tree species composition and host density to tree resistance to herbivores. Both processes had directional changes over time. These results indicate that the resistance of planted forests to herbivores can be improved by carefully choosing the composition of mixed forests and the timing of species planting.Keywords Associational effects · Forest · ORPHEE experiment · Plant–insect interactions · Thaumetopoea pityocampa </p

    Fungal disease incidence along tree diversity gradients depends on latitude in European forests

    Get PDF
    European forests host a diversity of tree species that are increasingly threatened by fungal pathogens, which may have cascading consequences for forest ecosystems and their functioning. Previous experimental studies suggest that foliar and root pathogen abundance and disease severity decrease with increasing tree species diversity, but evidences from natural forests are rare. Here, we tested whether foliar fungal disease incidence was negatively affected by tree species diversity in different forest types across Europe. We measured the foliar fungal disease incidence on 16 different tree species in 209 plots in six European countries, representing a forest-type gradient from the Mediterranean to boreal forests. Forest plots of single species (monoculture plots) and those with different combinations of two to five tree species (mixed species plots) were compared. Specifically, we analyzed the influence of tree species richness, functional type (conifer vs. broadleaved) and phylogenetic diversity on overall fungal disease incidence. The effect of tree species richness on disease incidence varied with latitude and functional type. Disease incidence tended to increase with tree diversity, in particular in northern latitudes. Disease incidence decreased with tree species richness in conifers, but not in broadleaved trees. However, for specific damage symptoms, no tree species richness effects were observed. Although the patterns were weak, susceptibility of forests to disease appears to depend on the forest site and tree type

    Effects of insularity on insect leaf herbivory and chemical defences in a Mediterranean oak species

    Get PDF
    Aim Research on plant–herbivore interactions has shown that islands typically have low abundances and diversity of herbivores because of barriers to dispersal, isolation and reduced land area. Islands commonly have lower levels of herbivory relative to mainland regions, and, as a consequence, insular plants should exhibit lower levels of defences than their mainland counterparts. Despite these predictions, there are significant gaps in our understanding of insularity effects on plant–herbivore interactions. For instance, most work addressing the effects of insularity on plant–herbivore interactions have compared one or a few islands with a single mainland site. In addition, studies have measured herbivory or plant defences but not both, and the influence of abiotic factors has been neglected. Location Mediterranean Basin (from Spain to Greece). Taxon Quercus ilex L. Methods We conducted a large‐scale study to investigate whether insect leaf herbivory and plant chemical defences in holm oak (Quercus ilex L.) differ between insular versus mainland populations. We further investigated mechanisms by which insularity effects on herbivory may take place by assessing the influence of defences and climatic variables on herbivory. Results We found that insular populations exhibited lower herbivory and higher defences (condensed tannins) than their mainland counterparts. Our analyses, however, suggest that these concomitant patterns of insect herbivory and plant defences were seemingly unrelated as island versus mainland differences in defences did not account for the observed pattern in herbivory. Furthermore, climatic factors did not explain insularity effects on either herbivory or plant defences. Main conclusions Overall, this study provides one of the most robust assessments to date on insularity effects on herbivory and builds towards a better understanding of the ecology and evolution of plant–insect interactions in insular ecosystems.info:eu-repo/semantics/acceptedVersio

    Effects of insularity on insect leaf herbivory and chemical defences in a Mediterranean oak species

    Get PDF
    Aim Research on plant–herbivore interactions has shown that islands typically have low abundances and diversity of herbivores because of barriers to dispersal, isolation and reduced land area. Islands commonly have lower levels of herbivory relative to mainland regions, and, as a consequence, insular plants should exhibit lower levels of defences than their mainland counterparts. Despite these predictions, there are significant gaps in our understanding of insularity effects on plant–herbivore interactions. For instance, most work addressing the effects of insularity on plant–herbivore interactions have compared one or a few islands with a single mainland site. In addition, studies have measured herbivory or plant defences but not both, and the influence of abiotic factors has been neglected. Location Mediterranean Basin (from Spain to Greece). Taxon Quercus ilex L. Methods We conducted a large‐scale study to investigate whether insect leaf herbivory and plant chemical defences in holm oak (Quercus ilex L.) differ between insular versus mainland populations. We further investigated mechanisms by which insularity effects on herbivory may take place by assessing the influence of defences and climatic variables on herbivory. Results We found that insular populations exhibited lower herbivory and higher defences (condensed tannins) than their mainland counterparts. Our analyses, however, suggest that these concomitant patterns of insect herbivory and plant defences were seemingly unrelated as island versus mainland differences in defences did not account for the observed pattern in herbivory. Furthermore, climatic factors did not explain insularity effects on either herbivory or plant defences. Main conclusions Overall, this study provides one of the most robust assessments to date on insularity effects on herbivory and builds towards a better understanding of the ecology and evolution of plant–insect interactions in insular ecosystems.info:eu-repo/semantics/acceptedVersio

    Biotic and abiotic drivers of soil microbial functions across tree diversity experiments

    Get PDF
    Aim Soil microorganisms are essential for the functioning of terrestrial ecosystems. Although soil microbial communities and functions may be linked to the tree species composition and diversity of forests, there has been no comprehensive study of how general potential relationships are and if these are context-dependent. A global network of tree diversity experiments (TreeDivNet) allows for a first examination of tree diversity-soil microbial function relationships across environmental gradients. Location Global Major Taxa Studied Soil microorganisms Methods Soil samples collected from eleven tree diversity experiments in four biomes across four continents were used to measure soil basal respiration, microbial biomass, and carbon use efficiency using the substrate-induced respiration method. All samples were measured using the same analytical device in the same laboratory to prevent measurement bias. We used linear mixed-effects models to examine the effects of tree species diversity, environmental conditions, and their interactions on soil microbial functions. Results Across biodiversity experiments, abiotic drivers, mainly soil water content, significantly increased soil microbial functions. Potential evapotranspiration (PET) increased, whereas soil C-to-N ratio (CN) decreased soil microbial functions under dry soil conditions, but high soil water content reduced the importance of other abiotic drivers. Tree species richness and phylogenetic diversity had overall similar, but weak and context-dependent (climate, soil abiotic variables) effects on soil microbial respiration. Positive tree diversity effects on soil microbial respiration were most pronounced at low PET, low soil CN, and high tree density. Soil microbial functions increased with the age of the experiment. Main conclusions Our results point at the importance of soil water content for maintaining high levels of soil microbial functions and modulating effects of other environmental drivers. Moreover, overall tree diversity effects on soil microbial functions seem to be negligible in the short term (experiments were 1-18 years old). However, context-dependent tree diversity effects (climate, soil abiotic variables) have greater importance at high tree density, and significant effects of experimental age call for longer-term studies. Such systematic insights are key to better integrate soil carbon dynamics into the management of afforestation projects across environmental contexts, as today’s reforestation efforts remain focused largely on aboveground carbon storage and are still dominated by less diverse forests stands of commercial species

    Widespread latitudinal asymmetry in the performance of marginal populations: A meta-analysis

    Get PDF
    Aim Range shifts are expected to occur when populations at one range margin perform better than those at the other margin, yet no global trend in population performances at range margins has been demonstrated empirically across a wide range of taxa and biomes. Here we test the prediction that, if impacts of ongoing climate change on performance in marginal populations are widespread, then populations from the high-latitude margin (HLM) should perform as well as or better than central populations, whereas low-latitude margin (LLM) populations should perform worse. Location Global. Time period 1995–2019. Major taxa studied Plants and animals. Methods To test our prediction, we used a meta-analysis to quantify empirical support for asymmetry in the performance of high- and low-latitude margin populations compared to central populations. Performance estimates (survival, reproduction, or lifetime fitness) for populations occurring in their natural environment were derived from 51 papers involving 113 margin-centre comparisons from 54 species and 705 populations from the Americas, Europe, Africa and Australia. We then related these performance differences to climatic differences among populations. We also tested whether patterns are consistent across taxonomic kingdoms (plants vs animals) and across realms (marine vs terrestrial). Results Populations at margins performed significantly worse than central populations, and this trend was primarily driven by the low-latitude margin. Although the difference was of small magnitude, it was largely consistent across biological kingdoms and realms. Differences in performance were weakly (p = .08) related to the difference in average temperatures between central and marginal populations. Main conclusions The observed asymmetry in performance in marginal populations is consistent with predictions about the effects of global climate change, though further research is needed to confirm the effect of climate. It indicates that changes in demographic rates in marginal populations can serve as early-warning signals of impending range shifts
    corecore