15 research outputs found

    Numerical simulation of Ginzburg-Landau-Langevin equations

    Full text link

    Nonequilibrium dynamics of quantum fields

    Full text link
    The nonequilibrium effective equation of motion for a scalar background field in a thermal bath is studied numerically. This equation emerges from a microscopic quantum field theory derivation and it is suitable to a Langevin simulation on the lattice. Results for both the symmetric and broken phases are presented.Comment: To appear in the proceedings of 5th International Conference on Perspectives in Hadronic Physics: International Conference on Particle-Nucleus and Nucleus-Nucleus Scattering at Relativistic Energies, Trieste, Italy, 22-26 May 2006. V2:reference correcte

    Langevin Simulation of Scalar Fields: Additive and Multiplicative Noises and Lattice Renormalization

    Full text link
    We consider the Langevin lattice dynamics for a spontaneously broken lambda phi^4 scalar field theory where both additive and multiplicative noise terms are incorporated. The lattice renormalization for the corresponding stochastic Ginzburg-Landau-Langevin and the subtleties related to the multiplicative noise are investigated.Comment: 26 pages, 4 eps figures (Elsevier latex style

    Equilibration and relaxation times at the chiral phase transition including reheating

    Full text link
    We investigate the relaxational dynamics of the order parameter of chiral symmetry breaking, the sigma mean-field, with a heat bath consisting of quarks and antiquarks. A semiclassical stochastic Langevin equation of motion is obtained from the linear sigma model with constituent quarks. The equilibration of the system is studied for a first order phase transition and a critical point, where a different behavior is found. At the first order phase transition we observe the phase coexistence and at a critical point the phenomenon of critical slowing down with large relaxation times. We go beyond existing Langevin studies and include reheating of the heat bath by determining the energy dissipation during the relaxational process. The energy of the entire system is conserved. In a critical point scenario we again observe critical slowing down

    Método do hamiltoniano termodinamicamente equivalente para sistemas de muitos corpos

    No full text
    O objetivo da Tese é investigar a aplicabilidade e propor extensões do método do hamiltoniano termodinamicamente equivalente (MHTE) para sistemas de muitos corpos descritos por uma teoria de campos. Historicamente, o MHTE tem sua origem na teoria quântica de muitos corpos para descrever o fenômeno da supercondutividade. O método consiste na observação de que o hamiltoniano de um sistema pode ser diagonalizado exatamente através de uma transformação unitária quando um número finito de momentos transferidos que contribuem para a interação é levado em conta no limite termodinâmico. Essa transformação unitária depende explicitamente de funções de gap que podem ser determinadas através do método variacional de Gibbs. Na presente Tese, extensões do método são feitas visando aplicações em sistemas de muitos corpos em diferentes situações, tais como: transições de fase estáaticas, evolução temporal de parâmetros de ordem descrita por equações dinâmicas estocásticas do tipo Ginzburg-Landau-Langevin (GLL), teorias quânticas de campos escalares relativísticos e teorias de muitos corpos para sistemas fermiônicos não relativísticos. Mostra-se, em particular, que o MHTE é um esquema de aproximação sistemático e controlável que permite incorporar acoplamentos de componentes de Fourier de parâmetros de ordem além do modo zero, da mesma forma que em teorias quânticas relativísticas ou não relativísticas ele incorpora correlações não perturbativas entre as partículas além daquelas levadas em conta pelas tradicionais aproximações de campo médio. Métodos são desenvolvidos para obtermos soluções numéricas explícitas com o objetivo de avaliar a aplicabilidade do MHTE em alguns casos específicos. Particular atenção é dedicada ao controle de divergências de Rayleigh-Jeans nas simulações numéricas de equações de GLLThe general objective of the Thesis is to apply the Method of the Thermodynamically Equivalent Hamiltonian (MTEH) to many-body systems described by a field theory. Historically, the MTEH has its origins in the quantum theory of manybody systems to describe the phenomenon of superconductivity. The method is based on the observation that the Hamiltonian of the system can be diagonalized exactly with a unitary transformation when a finite number of transfer momenta of the interaction are taken into account in the thermodynamic limit. This unitary transformation depends explicitly on gap functions that can be determined with the use of the Gibbs variational principle. In the present Thesis, extensions of the method are made envisaging applications in many-body systems in different situations, like: static phase transitions, time evolution of order parameters described by dynamic stochastic Ginzburg-Landau-Langevin equations, relativistic quantum scalar field theories, and many-body theories for nonrelativistic fermionic systems. It is shown that the MTEH is a systematic and controllable approximation scheme that in the theory of phase transitions allows to incorporate Fourier modes of the order parameter beyond the zero mode, in the same way that in the relativistic and nonrelativistic theories it incorporates particle nonperturbative correlations beyond those taken into account by the traditional mean field approximation. Methods are developed to obtain explicit numerical solutions with the aim to assess the applicability of the MTEH in specific situations. Particular attention is devoted to the control of Rayleigh-Jeans ultraviolet divergences in the numerical simulations of Ginzburg-Landau-Langevin equationsFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    Numerical simulation of Ginzburg-Landau-Langevin equations

    No full text
    This work is concerned with non-equilibrium phenomena, with focus on the numerical simulation of the relaxation of non-conserved order parameters described by stochastic kinetic equations known as Ginzburg-Landau-Langevin (GLL) equations. We propose methods for solving numerically these type of equations, with additive and multiplicative noises. Illustrative applications of the methods are presented for different GLL equations, with emphasis on equations incorporating memory effects

    Numerical approximation of the Ginzburg-Landau equation with memory effects in the dynamics of phase transitions

    No full text
    We consider the out-of-equilibrium time evolution of a nonconserved order parameter using the Ginzburg-Landau equation including memory effects. Memory effects are expected to play important role on the nonequilibrium dynamics for fast phase transitions, in which the time scales of the rapid phase conversion are comparable to the microscopic time scales. We consider two numerical approximation schemes based on Fourier collocation and finite difference methods and perform a numerical analysis with respect to the existence, stability and convergence of the schemes. We present results of direct numerical simulations for one and three spatial dimensions, and examine numerically the stability and convergence of both approximation schemes. (C) 2008 Elsevier B.V. All rights reserved.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    NOISE and ULTRAVIOLET DIVERGENCES in SIMULATIONS of GINZBURG-LANDAU-LANGEVIN TYPE of EQUATIONS

    No full text
    The time evolution of an order parameter towards equilibrium can be described by nonlinear Ginzburg-Landau (GL) type of equations, also known as time-dependent nonlinear Schrodinger equations. Environmental effects of random nature are usually taken into account by noise sources, turning the GL equations into stochastic equations. Noise sources give rise to lattice-spacing dependence of the solutions of the stochastic equations. We present a systematic method to renormalize the equations on a spatial lattice to obtain lattice-spacing independent solutions. We illustrate the method in approximation schemes designed to treat nonlinear and nonlocal GL equations that appear in real time thermal field theory and stochastic quantization.Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Univ Estadual Paulista, Inst Fis Teor, BR-01140070 São Paulo, BrazilUniv Fed Sao Joao Del Rei, Dept Ciencias Nat, BR-36301000 Sao Joao Del Rei, MG, BrazilUniversidade Federal de São Paulo, Dept Informat Saude, Escola Paulista Med, BR-04023062 São Paulo, BrazilUniversidade Federal de São Paulo, Dept Informat Saude, Escola Paulista Med, BR-04023062 São Paulo, BrazilWeb of Scienc
    corecore