3,342 research outputs found
Making mentoring work: The need for rewiring epistemology
To help produce expert coaches at both participation and performance levels, a number of governing bodies have established coach mentoring systems. In light of the limited literature on coach mentoring, as well as the risks of superficial treatment by coach education systems, this paper therefore critically discusses the role of the mentor in coach development, the nature of the mentor-mentee relationship and, most specifically, how expertise in the mentee may best be developed. If mentors are to be effective in developing expert coaches then we consequently argue that a focus on personal epistemology is required. On this basis, we present a framework that conceptualizes mentee development on this level through a step by step progression, rather than unrealistic and unachievable leap toward expertise. Finally, we consider the resulting implications for practice and research with respect to one-on-one mentoring, communities of practice, and formal coach education
The Formation of Broad Line Clouds in the Accretion Shocks of Active Galactic Nuclei
Recent work on the gas dynamics in the Galactic Center has improved our
understanding of the accretion processes in galactic nuclei, particularly with
regard to properties such as the specific angular momentum distribution,
density, and temperature of the inflowing plasma. This information can be
valuable in trying to determine the origin of the Broad Line Region (BLR) in
Active Galactic Nuclei (AGNs). In this paper, we explore various scenarios for
the cloud formation based on the underlying principle that the source of plasma
is ultimately that portion of the gas trapped by the central black hole from
the interstellar medium. Based on what we know about the Galactic Center, it is
likely that in highly dynamic environments such as this, the supply of matter
is due mostly to stellar winds from the central cluster. Winds accreting onto a
central black hole are subjected to several disturbances capable of producing
shocks, including a Bondi-Hoyle flow, stellar wind-wind collisions, and
turbulence. Shocked gas is initially compressed and heated out of thermal
equilibrium with the ambient radiation field; a cooling instability sets in as
the gas is cooled via inverse-Compton and bremsstrahlung processes. If the
cooling time is less than the dynamical flow time through the shock region, the
gas may clump to form the clouds responsible for broad line emission seen in
many AGN spectra. Clouds produced by this process display the correct range of
densities and velocity fields seen in broad emission lines. Very importantly,
the cloud distribution agrees with the results of reverberation studies, in
which it is seen that the central line peak responds slower to continuum
changes than the line wings.Comment: 22 pages, 5 figure
A graphene transmon operating at 1 T
A superconducting transmon qubit resilient to strong magnetic fields is an
important component for proposed topological and hybrid quantum computing (QC)
schemes. Transmon qubits consist of a Josephson junction (JJ) shunted by a
large capacitance, coupled to a high quality factor superconducting resonator.
In conventional transmon devices, the JJ is made from an Al/AlO/Al tunnel
junction which ceases operation above the critical magnetic field of Al, 10 mT.
Alternative junction technologies are therefore required to push the operation
of these qubits into strong magnetic fields. Graphene JJs are one such
candidate due to their high quality, ballistic transport and electrically
tunable critical current densities. Importantly the monolayer structure of
graphene protects the JJ from orbital interference effects that would otherwise
inhibit operation at high magnetic field. Here we report the integration of
ballistic graphene JJs into microwave frequency superconducting circuits to
create the first graphene transmons. The electric tunability allows the
characteristic band dispersion of graphene to be resolved via dispersive
microwave spectroscopy. We demonstrate that the device is insensitive to the
applied field and perform energy level spectroscopy of the transmon at 1 T,
more than an order of magnitude higher than previous studies.Comment: attached supplementary materia
Configuration development study of the X-24C hypersonic research airplane
Bottom line results were made of a three-phase study to determine the feasibility of designing, building, and operating, and maintaining an air-launched high performance aircraft capable of cruising at speeds up to Mach 8 for short durations. The results show that Lockalloy heat-sink structure affords the capability for a 'work-horse' vehicle which can serve as an excellent platform for this research. It was further concluded that the performance of a blended wing body configuration surpassed that of a lifting body design for typical X-24C missions. The cost of a two vehicle program, less engines, B-52 modification and contractor support after delivery, can be kept within $70M (in Jan. 1976 dollars)
Models for Chronology Selection
In this paper, we derive an expression for the grand canonical partition
function for a fluid of hot, rotating massless scalar field particles in the
Einstein universe. We consider the number of states with a given energy as one
increases the angular momentum so that the fluid rotates with an increasing
angular velocity. We find that at the critical value when the velocity of the
particles furthest from the origin reaches the speed of light, the number of
states tends to zero. We illustrate how one can also interpret this partition
function as the effective action for a boosted scalar field configuration in
the product of three dimensional de Sitter space and . In this case, we
consider the number of states with a fixed linear momentum around the as
the particles are given more and more boost momentum. At the critical point
when the spacetime is about to develop closed timelike curves, the number of
states again tends to zero. Thus it seems that quantum mechanics naturally
enforces the chronology protection conjecture by superselecting the causality
violating field configurations from the quantum mechanical phase space.Comment: 20 pages, Late
The roles of charge exchange and dissociation in spreading Saturn's neutral clouds
Neutrals sourced directly from Enceladus's plumes are initially confined to a
dense neutral torus in Enceladus's orbit around Saturn. This neutral torus is
redistributed by charge exchange, impact/photodissociation, and neutral-neutral
collisions to produce Saturn's neutral clouds. Here we consider the former
processes in greater detail than in previous studies. In the case of
dissociation, models have assumed that OH is produced with a single speed of 1
km/s, whereas laboratory measurements suggest a range of speeds between 1 and
1.6 km/s. We show that the high-speed case increases dissociation's range of
influence from 9 to 15 Rs. For charge exchange, we present a new modeling
approach, where the ions are followed within a neutral background, whereas
neutral cloud models are conventionally constructed from the neutrals' point of
view. This approach allows us to comment on the significance of the ions'
gyrophase at the moment charge exchange occurs. Accounting for gyrophase: (1)
has no consequence on the H2O cloud; (2) doubles the local density of OH at the
orbit of Enceladus; and (3) decreases the oxygen densities at Enceladus's orbit
by less than 10%. Finally, we consider velocity-dependent, as well as
species-dependent cross sections and find that the oxygen cloud produced from
charge exchange is spread out more than H2O, whereas the OH cloud is the most
confined.Comment: Accepted to the Journal of Geophysical Research, 49 pages, 10 figure
Using Stories in Coach Education
The purpose of this paper is to illustrate how storied representations of research can be used as an effective pedagogical tool in coach education. During a series of continuing professional development seminars for professional golf coaches, we presented our research in the form of stories and poems which were created in an effort to evoke and communicate the lived experiences of elite professional golfers. Following these presentations, we obtained written responses to the stories from 53 experienced coaches who attended the seminars. Analysis of this data revealed three ways in which coaches responded to the stories: (i) questioning; (ii) summarising; and (iii) incorporating. We conclude that these responses illustrate the potential of storied forms of representation to enhance professional development through stimulating reflective practice and increasing understanding of holistic, person-centred approaches to coaching athletes in high-performance sport
Plasma IMS Composition Measurements for Europa and Ganymede
NASA and ESA are planning the joint Europa Jupiter System Mission (EJSM) to the Jupiter system with specific emphasis to Europa and Ganymede, respectively. The Japanese Space Agency is also planning an orbiter mission to explore Jupiter's magnetosphere and the Galilean satellites. For NASA's Jupiter Europa Orbiter (JEO) we are developing the 3D Ion Mass Spectrometer (IMS) with two main goals which can also be applied to the other Galilean moons, 1) measure the plasma interaction between Europa and Jupiter's magnetosphere and 2) infer the 4n surface composition to trace elemental [1] and significant isotopic levels. The first goal supports the magnetometer (MAG) measurements, primarily directed at detection of Europa's sub-surface ocean, while the second gives information about transfer of material between the Galilean moons, and between the moon surfaces and subsurface layers putatively including oceans. The measurement of the interactions for all the Galilean moons can be used to trace the in situ ion measurements of pickup ions back to either Europa's or Ganymede's surface from the respectively orbiting spacecraft. The IMS instrument, being developed under NASA's Astrobiology Instrument Development Program, would maximally achieve plasma measurement requirements for JEO and EJSM while moving forward our knowledge of Jupiter system composition and source processes to far higher levels than previously envisaged
Numerical methods and hypoexponential approximations for gamma distributed delay differential equations
Gamma distributed delay differential equations (DDEs) arise naturally in many modelling applications. However, appropriate numerical methods for generic gamma distributed DDEs have not previously been implemented. Modellers have therefore resorted to approximating the gamma distribution with an Erlang distribution and using the linear chain technique to derive an equivalent system of ordinary differential equations (ODEs). In this work, we address the lack of appropriate numerical tools for gamma distributed DDEs in two ways. First, we develop a functional continuous Runge–Kutta (FCRK) method to numerically integrate the gamma distributed DDE without resorting to Erlang approximation. We prove the fourth-order convergence of the FCRK method and perform numerical tests to demonstrate the accuracy of the new numerical method. Nevertheless, FCRK methods for infinite delay DDEs are not widely available in existing scientific software packages. As an alternative approach to solving gamma distributed DDEs, we also derive a hypoexponential approximation of the gamma distributed DDE. This hypoexponential approach is a more accurate approximation of the true gamma distributed DDE than the common Erlang approximation but, like the Erlang approximation, can be formulated as a system of ODEs and solved numerically using standard ODE software. Using our FCRK method to provide reference solutions, we show that the common Erlang approximation may produce solutions that are qualitatively different from the underlying gamma distributed DDE. However, the proposed hypoexponential approximations do not have this limitation. Finally, we apply our hypoexponential approximations to perform statistical inference on synthetic epidemiological data to illustrate the utility of the hypoexponential approximation
- …