131 research outputs found
Cavitating leukoencephalopathy in a child carrying the mitochondrial A8344G mutation.
Mitochondrial disorders are usually characterized by the combination of deep gray and white matter involvement on brain imaging. However, a selective white matter involvement has been reported in specific mitochondrial diseases, including Leber hereditary optic neuropathy, myoneurogastrointestina
Evaluation of chromosome microarray analysis in a large cohort of females with autism spectrum disorders: A single center Italian study
Autism spectrum disorders (ASD) encompass a heterogeneous group of neurodevelopmental disorders resulting from the complex interaction between genetic and environmental factors. Thanks to the chromosome microarray analysis (CMA) in clinical practice, the accurate identification and characterization of submicroscopic deletions/duplications (copy number variants, CNVs) associated with ASD was made possible. However, the widely acknowledged excess of males on the autism spectrum reflects on a paucity of CMA studies specifically focused on females with ASD (f-ASD). In this framework, we aim to evaluate the frequency of causative CNVs in a single-center cohort of idiopathic f-ASD. Among the 90 f-ASD analyzed, we found 20 patients with one or two potentially pathogenic CNVs, including those previously associated with ASD (located at 16p13.2 16p11.2, 15q11.2, and 22q11.21 regions). An exploratory genotype/phenotype analysis revealed that the f-ASD with causative CNVs had statistically significantly lower restrictive and repetitive behaviors than those without CNVs or with non-causative CNVs. Future work should focus on further understanding of f-ASD genetic underpinnings, taking advantage of next-generation sequencing technologies, with the ultimate goal of contributing to precision medicine in ASD
Myoimaging in the NGS era: The discovery of a novel mutation in MYH7 in a family with distal myopathy and core-like features -a case report
Background: Myosin heavy chain 7 related myopathies are rare disorders characterized by a wide phenotypic spectrum and heterogeneous pathological features. In the present study, we performed clinical, morphological, genetic and imaging investigations in three relatives affected by autosomal dominant distal myopathy. Whilst earlier traditional Sanger investigations had pointed to the wrong gene as disease causative, next-generation sequencing allowed us to obtain the definitive molecular genetic diagnosis in the family.Case presentation: The proposita, being found to harbor a novel heterozygous mutation in the RYR1 gene (p. Glu294Lys), was initially diagnosed with core myopathy. Subsequently, consideration of muscle magnetic resonance imaging (MRI) features and extension of family study led this diagnosis to be questioned. Use of next-generation sequencing analysis identified a novel mutation in the MYH7gene (p.Ser1435Pro) that segregated in the affected family members.Conclusions: This study identified a novel mutation in MYH7 in a family where the conclusive molecular diagnosis was reached through a complicated path. This case report might raise awareness, among clinicians, of the need to interpret NGS data in combination with muscle MRI patterns so as to facilitate the pinpointing of the main molecular etiology in inherited muscle disorders
CCDC78: Unveiling the Function of a Novel Gene Associated with Hereditary Myopathy
CCDC78 was identified as a novel candidate gene for autosomal dominant centronuclear myopathy-4 (CNM4) approximately ten years ago. However, to date, only one family has been described, and the function of CCDC78 remains unclear. Here, we analyze for the first time a family harboring a CCDC78 nonsense mutation to better understand the role of CCDC78 in muscle. Methods: We conducted a comprehensive histopathological analysis on muscle biopsies, including immunofluorescent assays to detect multiple sarcoplasmic proteins. We examined CCDC78 transcripts and protein using WB in CCDC78-mutated muscle tissue; these analyses were also performed on muscle, lymphocytes, and fibroblasts from healthy subjects. Subsequently, we conducted RT-qPCR and transcriptome profiling through RNA-seq to evaluate changes in gene expression associated with CCDC78 dysfunction in muscle. Lastly, coimmunoprecipitation (Co-Ip) assays and mass spectrometry (LC-MS/MS) studies were carried out on extracted muscle proteins from both healthy and mutated subjects. Results: The histopathological features in muscle showed novel histological hallmarks, which included areas of dilated and swollen sarcoplasmic reticulum (SR). We provided evidence of nonsense-mediated mRNA decay (NMD), identified the presence of novel CCDC78 transcripts in muscle and lymphocytes, and identified 1035 muscular differentially expressed genes, including several involved in the SR. Through the Co-Ip assays and LC-MS/MS studies, we demonstrated that CCDC78 interacts with two key SR proteins: SERCA1 and CASQ1. We also observed interactions with MYH1, ACTN2, and ACTA1. Conclusions: Our findings provide insight, for the first time, into the interactors and possible role of CCDC78 in skeletal muscle, locating the protein in the SR. Furthermore, our data expand on the phenotype previously associated with CCDC78 mutations, indicating potential histopathological hallmarks of the disease in human muscle. Based on our data, we can consider CCDC78 as the causative gene for CNM4
Severe cardiomyopathy in a young patient with complete deficiency of adipose triglyceride lipase due to a novel mutation in PNPLA2 gene
We report the case of a 26 year-old male patient affected by neutral lipid storage myopathy with severe cardiac involvement. Patient parents were first cousins; a brother died at 3 years of age, during surgery. They referred that the child had always walked on toes, but he never presented weakness or difficulties in physical activity, compared to peers. The patient was first evaluated when he was 11 years-old and was reported to walk on toes, with difficulty to walk on heels, and to have mild calves hypertrophy and reduced tendon reflexes. Blood test revealed high values of CK (1657 U/L), while total and free carnitine levels were normal. Electromyography was normal; an effort test revealed excessive increase in lactic acid levels. He underwent a muscle biopsy that showed abnormal lipid storage. He was diagnosed to suffer from a lipid storage myopathy and therapy with riboflavin was started with some benefit to the patient. A neutral lipid storage myopathy was hypothesized and molecular analysis of the PNPLA2 gene revealed a homozygous novel deletion of seven nucleotides in exon 2 (c.41_47delGCTGCGG)
Next-generation sequencing approach to hyperCKemia: A 2-year cohort study
ObjectiveNext-generation sequencing (NGS) was applied in molecularly undiagnosed asymptomatic or paucisymptomatic hyperCKemia to investigate whether this technique might allow detection of the genetic basis of the condition.MethodsSixty-six patients with undiagnosed asymptomatic or paucisymptomatic hyperCKemia, referred to tertiary neuromuscular centers over an approximately 2-year period, were analyzed using a customized, targeted sequencing panel able to investigate the coding exons and flanking intronic regions of 78 genes associated with limb-girdle muscular dystrophies, rhabdomyolysis, and metabolic and distal myopathies.ResultsA molecular diagnosis was reached in 33 cases, corresponding to a positive diagnostic yield of 50%. Variants of unknown significance were found in 17 patients (26%), whereas 16 cases (24%) remained molecularly undefined. The major features of the diagnosed cases were mild proximal muscle weakness (found in 27%) and myalgia (in 24%). Fourteen patients with a molecular diagnosis and mild myopathic features on muscle biopsy remained asymptomatic at a 24-month follow-up.ConclusionsThis study of patients with undiagnosed hyperCKemia, highlighting the advantages of NGS used as a first-tier diagnostic approach in genetically heterogeneous conditions, illustrates the ongoing evolution of molecular diagnosis in the field of clinical neurology. Isolated hyperCKemia can be the sole feature alerting to a progressive muscular disorder requiring careful surveillance
Neutral Lipid Storage Diseases: clinical/genetic features and natural history in a large cohort of Italian patients
BACKGROUND: A small number of patients affected by Neutral Lipid Storage Diseases (NLSDs: NLSD type M with Myopathy and NLSD type I with Ichthyosis) have been described in various ethnic groups worldwide. However, relatively little is known about the progression and phenotypic variability of the disease in large specific populations. The aim of our study was to assess the natural history, disability and genotype-phenotype correlations in Italian patients with NLSDs. Twenty-one patients who satisfied the criteria for NLSDs were enrolled in a retrospective cross-sectional study to evaluate the genetic aspects, clinical signs at onset, disability progression and comorbidities associated with this group of diseases. RESULTS: During the clinical follow-up (range: 2-44 years, median: 17.8 years), two patients (9.5%, both with NLSD-I) died of hepatic failure, and a further five (24%) lost their ability to walk or needed help when walking after a mean period of 30.6 years of disease. None of the patients required mechanical ventilation. No patient required a heart transplant, one patient with NLSD-M was implanted with a cardioverter defibrillator for severe arrhythmias. CONCLUSION: The genotype/phenotype correlation analysis in our population showed that the same gene mutations were associated with a varying clinical onset and course. This study highlights peculiar aspects of Italian NLSD patients that differ from those observed in Japanese patients, who were found to be affected by a marked hypertrophic cardiopathy. Owing to the varying phenotypic expression of the same mutations, it is conceivable that some additional genetic or epigenetic factors affect the symptoms and progression in this group of diseases
Detection of the A189G mtDNA heteroplasmic mutation in relation to age in modern and ancient bones.
International audienceThe aim of this study was to demonstrate the presence of the A189G age-related point mutation on DNA extracted from bone. For this, a peptide nucleic acid (PNA)/DNA sequencing method which can determine an age threshold for the appearance of the mutation was used. Initially, work was done in muscle tissue in order to evaluate the sensitivity of the technique and afterwards in bone samples from the same individuals. This method was also applied to ancient bones from six well-preserved skeletal remains. The mutation was invariably found in muscle, and at a rate of up to 20% in individuals over 60 years old. In modern bones, the mutation was detected in individuals aged 38 years old or more, at a rate of up to 1%, but its occurrence was not systematic (only four out of ten of the individuals over 50 years old carried the heteroplasmy). For ancient bones, the mutation was also found in the oldest individuals according to osteologic markers. The study of this type of age-related mutation and a more complete understanding of its manifestation has potentially useful applications. Combined with traditional age markers, it could improve identification accuracy in forensic cases or in anthropological studies of ancient populations
- …