16 research outputs found

    Shock-capturing with discontinuous garlekin methods

    Get PDF
    A shock capturing strategy for high order Discontinuous Galerkin methods for conservation laws is proposed. We present a method in the one-dimensional case based on the introduction of artificial viscosity into the original equations. With this approach the shock is capture with sharp resolution maintaining high-order accuracy. The ideas for the extension to the two-dimensional case are also set

    Shock capturing for discontinuous Galerkin methods

    Get PDF
    This work is devoted to solve scalar hyperbolic conservation laws in the presence of strong shocks with discontinuous Galerkin methods (DGM). A standard approach is to use limiting strategies in order to avoid oscillations in the vicinity of the shock. Basically, these techniques reconstruct the solution with a lower order polynomial in those elements where discontinuities lie. These limiting procedures degrade the accuracy of the method and introduce an excessive amount of dissipation to the solution, in particular for high-order approximations. The aim of the present work is to use artificial diffusion instead of limiters to capture the shocks. We show preliminary results with the inviscid's Burgers equation and also with a convection-diffusion problem

    Un método de captura de choques basado en las funciones de forma para Galerkin discontinuo de alto orden

    Get PDF
    En este artículo se presenta un método de alto orden de Galerkin discontinuo para problemas de flujo com- presible, en los cuales es muy frecuente la aparición de choques. La estabilización se introduce mediante una nueva base de funciones. Esta base tiene la flexibilidad de variar localmente (en cada elemento) entre un espacio de funciones polinómicas continuas o un espacio de funciones polinómicas a trozos. Así, el método propuesto proporciona un puente entre los métodos estándar de alto orden de Galerkin disconti- nuo y los clásicos métodos de volúmenes finitos, manteniendo la localidad y compacidad del esquema. La variación de las funciones de la base se define automáticamente en función de la regularidad de la solución y la estabilización se introduce mediante el operador salto, estándar en los métodos Galerkin disconti- nuo. A diferencia de los clásicos métodos de limitadores de pendiente, la estrategia que se presenta es muy local y robusta, y es aplicable a cualquier orden de aproximación. Además, el método propuesto no requiere refinamiento adaptativo de la malla ni restricción del esquema de integración temporal. Se consideran varias aplicaciones de las ecuaciones de Euler que demuestran la validez y efectividad del método, especialmente para altos órdenes de aproximación.Peer ReviewedPostprint (author's final draft

    An XFEM/CZM implementation for massively parallel simulations of composites fracture

    Get PDF
    Because of their widely generalized use in many industries, composites are the subject of many research campaigns. More particularly, the development of both accurate and flexible numerical models able to capture their intrinsically multiscale modes of failure is still a challenge. The standard finite element method typically requires intensive remeshing to adequately capture the geometry of the cracks and high accuracy is thus often sacrificed in favor of scalability, and vice versa. In an effort to preserve both properties, we present here an extended finite element method (XFEM) for large scale composite fracture simulations. In this formulation, the standard FEM formulation is partially enriched by use of shifted Heaviside functions with special attention paid to the scalability of the scheme. This enrichment technique offers several benefits since the interpolation property of the standard shape function still holds at the nodes. Those benefits include (i) no extra boundary condition for the enrichment degree of freedom, and (ii) no need for transition/blending regions; both of which contribute to maintaining the scalability of the code. Two different cohesive zone models (CZM) are then adopted to capture the physics of the crack propagation mechanisms. At the intralaminar level, an extrinsic CZM embedded in the XFEM formulation is used. At the interlaminar level, an intrinsic CZM is adopted for predicting the failure. The overall framework is implemented in ALYA, a mechanics code specifically developed for large scale, massively parallel simulations of coupled multi-physics problems. The implementation of both intrinsic and extrinsic CZM models within the code is such that it conserves the extremely efficient scalability of ALYA while providing accurate physical simulations of computationally expensive phenomena. The strong scalability provided by the proposed implementation is demonstrated. The model is ultimately validated against a full experimental campaign of loading tests and X-ray tomography analyzes.A.J., A.M., D.T., L.N. and L.W. acknowledge funding through the SIMUCOMP ERA-NET MATERA + project financed by the Fonds National de la Recherche (FNR) of Luxembourg, the Consejería de Educación y Empleo of the Comunidad de Madrid, the Walloon region (agreement no 1017232, CT-EUC 2010–10-12), and by the European Unions Seventh Framework Programme (FP7/2007–2013).Peer ReviewedPostprint (author's final draft

    Shock capturing for discontinuous galerkin methods

    No full text
    Aquesta tesi doctoral proposa formulacions de Galerkin Discontinu (DG) d’alt ordre per la captura de shocks, obtenint alhora solucions altament precises per problemes de flux compressible. En les últimes dècades, la investigació en els mètodes de DG ha estat en constant creixement. L'èxit dels mètodes DG en problemes hiperbòlics ha conduit el seu desenvolupament en lleis de conservació no lineals i problemes de convecció dominant. Entre els avantatges dels mètodes DG, destaquen la seva estabilitat inherent i les propietats locals de conservació. D'altra banda, els mètodes DG estan especialment dissenyats per l’ús aproximacions d'ordre superior. De fet, en els últims anys s'ha demostrat que la resolució de problemes de convecció dominant ja no es restringeix només a elements d'ordre inferior. De fet, es necessiten models numèrics d'alta precisió per aconseguir prediccions altament fiables dins la dinàmica de fluids computacional (CFD). En aquest context es presenten i discuteixen dos tècniques de captura de shocks. En primer lloc, es presenta una tècnica novedosa i senzilla basada en la introducció d'una nova base de funcions de forma. Aquesta base té la capacitat de canviar a nivell local entre una interpolació contínua o discontínua, depenent de la suavitat de la funció que es vol aproximar. En presència de xocs, les discontinuïtats introduïdes dins l’element permeten incloure l'estabilització necessària gràcies a l’ús dels fluxos numèrics, i alhora exploten les propietats intrínsiques del mètodes DG. En conseqüència, es poden utilitzar malles grolleres amb elements d’ordre superior. Amb aquestes discretitzacions i, utilitzant el mètode proposats, els xocs queden continguts a l’interior de l’element i per tant, és possible evitar l’ús de tècniques de refinament adaptatiu de la malla, alhora que es manté la localitat i compacitat dels esquemes DG. En segon lloc, es proposa una tècnica clàssica i, aparentment simple: la introducció de la viscositat artificial. Primerament es realitza un estudi detallat per al cas unidimensional. S’obté una viscositat d’alta precisió que escala segons el valor hk amb 1 ≤ k ≤ p i essent h la mida de l’element. En conseqüència, s’obté un xoc amb amplitud del mateix ordre. Seguidament, l'estudi de la viscositat unidimensional obtenida s'extén al cas multidimensional per a malles triangulars. L'extensió es basa en la projecció de la viscositat unidimensional en unes determinades direccions espacials dins l’element. Es demostra de manera consistent que la viscositat introduïda és, com a molt, del mateix ordre que la resolució donada per la discretització espacial, és a dir, h/p. El mètode és especialment eficient per aproximacions de Galerkin discontinu d’alt ordre, per exemple p≥ 3. Les dues metodologies es validen mitjançant una àmplia selecció d’exemples numèrics. En alguns exemples, els mètodes proposats permeten una reducció en el nombre de graus de llibertat necessaris per capturar xocs acuradament de fins i tot un ordre de magnitud, en comparació amb mètodes estàndar de refinament adaptatiu amb aproximacions de baix ordre.This thesis proposes shock-capturing methods for high-order Discontinuous Galerkin (DG) formulations providing highly accurate solutions for compressible flows. In the last decades, research in DG methods has been very active. The success of DG in hyperbolic problems has driven many studies for nonlinear conservation laws and convection-dominated problems. Among all the advantages of DG, their inherent stability and local conservation properties are relevant. Moreover, DG methods are naturally suited for high-order approximations. Actually, in recent years it has been shown that convection-dominated problems are no longer restricted to low-order elements. In fact, highly accurate numerical models for High-Fidelity predictions in CFD are necessary. Under this rationale, two shock-capturing techniques are presented and discussed. First, a novel and simple technique based on on the introduction of a new basis of shape functions is presented. It has the ability to change locally between a continuous or discontinuous interpolation depending on the smoothness of the approximated function. In the presence of shocks, the new discontinuities inside an element introduce the required stabilization thanks to the numerical fluxes, thus exploiting DG inherent properties. Large high-order elements can therefore be used and shocks are captured within a single element, avoiding adaptive mesh refinement and preserving the locality and compactness of the DG scheme. Second, a classical and, apparently simple, technique is advocated: the introduction of artificial viscosity. First, a one-dimensional study is perfomed. Viscosity of the order O(hk) with 1≤ k≤ p is obtained, hence inducing a shock width of the same order. Second, the study extends the accurate one-dimensional viscosity to triangular multidimensional meshes. The extension is based on the projection of the one-dimensional viscosity into some characteristic spatial directions within the elements. It is consistently shown that the introduced viscosity scales, at most, withthe DG resolutions length scales, h/p. The method is especially reliable for highorder DG approximations, say p≥3. A wide range of different numerical tests validate both methodologies. In some examples the proposed methods allow to reduce by an order of magnitude the number of degrees of freedom necessary to accurately capture the shocks, compared to standard low order h-adaptive approaches.Postprint (published version

    Shock capturing for discontinuous Galerkin methods

    No full text
    This work is devoted to solve scalar hyperbolic conservation laws in the presence of strong shocks with discontinuous Galerkin methods (DGM). A standard approach is to use limiting strategies in order to avoid oscillations in the vicinity of the shock. Basically, these techniques reconstruct the solution with a lower order polynomial in those elements where discontinuities lie. These limiting procedures degrade the accuracy of the method and introduce an excessive amount of dissipation to the solution, in particular for high-order approximations. The aim of the present work is to use artificial diffusion instead of limiters to capture the shocks. We show preliminary results with the inviscid's Burgers equation and also with a convection-diffusion problem

    Shock-capturing with discontinuous garlekin methods

    No full text
    A shock capturing strategy for high order Discontinuous Galerkin methods for conservation laws is proposed. We present a method in the one-dimensional case based on the introduction of artificial viscosity into the original equations. With this approach the shock is capture with sharp resolution maintaining high-order accuracy. The ideas for the extension to the two-dimensional case are also set

    One-dimensional shock-capturing for high-order discontinuous Galerkin methods

    No full text
    Discontinuous Galerkin methods have emerged in recent years as an alternative for nonlinear conservation equations. In particular, their inherent structure (a numerical flux based on a suitable approximate Riemann solver introduces some stabilization) suggests that they are specially adapted to capture shocks. However, numerical fluxes are not sufficient to stabilize the solution in the presence of shocks. Thus, slope limiter methods, which are extensions of finite volume methods, have been proposed. These techniques require, in practice, mesh adaption to localize the shock structure. This is is more obvious for large elements typical of high-order approximations. Here, a new approach based on the introduction of artificial diffusion into the original equations is presented. The order is not systematically decreased to one in the presence of the shock, large high-order elements can be used, and several linear and nonlinear tests demonstrate the efficiency of the proposed methodology.Peer Reviewe

    One-dimensional shock-capturing for high-order discontinuous Galerkin methods

    Get PDF
    Discontinuous Galerkin methods have emerged in recent years as an alternative for nonlinear conservation equations. In particular, their inherent structure (a numerical flux based on a suitable approximate Riemann solver introduces some stabilization) suggests that they are specially adapted to capture shocks. However, numerical fluxes are not sufficient to stabilize the solution in the presence of shocks. Thus, slope limiter methods, which are extensions of finite volume methods, have been proposed. These techniques require, in practice, mesh adaption to localize the shock structure. This is is more obvious for large elements typical of high-order approximations. Here, a new approach based on the introduction of artificial diffusion into the original equations is presented. The order is not systematically decreased to one in the presence of the shock, large high-order elements can be used, and several linear and nonlinear tests demonstrate the efficiency of the proposed methodology.Peer Reviewe

    Dimensionless analysis of HSDM and application to simulation of breakthrough curves of highly adsorbent porous media

    No full text
    The homogeneous surface diffusion model (HSDM) is widely used for adsorption modeling of aqueous solutions. The Biot number is usually used to characterize model behavior. However, some limitations of this characterization have been reported recently, and the Stanton number has been proposed as a complement to be considered. In this work, a detailed dimensionless analysis of HSDM is presented and limit behaviors of the model are characterized, confirming but extending previous results. An accurate and efficient numerical solver is used for these purposes. The intraparticle diffusion equation is reduced to a system of two ordinary differential equations, the transport-reaction equation is discretized by using a discontinuous Galerkin method, and the overall system evolution is integrated with a time-marching scheme. This approach facilitates the simulation of HSDM with a wide range of dimensionless numbers and with a correct treatment of shocks, which appear with nonlinear adsorption isotherms and with large Biot numbers and small surface diffusivity modulus. The approach is applied to simulate the breakthrough curves of granular ferric hydroxide. Published experimental data is adequately simulated.Peer ReviewedPostprint (published version
    corecore