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SUMMARY

Discontinuous Galerkin methods have emerged in recent years as an alternative for nonlinear conservation 
equations. In particular, their inherent structure (a numerical flux based on a suitable approximate Riemann 
solver introduces some stabilization) suggests that they are specially adapted to capture shocks. However, 
numerical fluxes are not sufficient to stabilize the solution in the presence of shocks. Thus, slope limiter 
methods, which are extensions of finite volume methods, have been proposed. These techniques require, in 
practice, mesh adaption to localize the shock structure. This is is more obvious for large elements typical of 
high-order approximations. Here, a new approach based on the introduction of artificial diffusion into the 
original equations is presented. The order is not systematically decreased to one in the presence of the shock, 
large high-order elements can be used, and several linear and nonlinear tests demonstrate the efficiency of 
the proposed methodology. 
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1. INTRODUCTION

In the last decades, discontinuous Galerkin (DG) methods have centered many studies for nonlin-
ear conservation laws and convection-dominated problems. Some CFD applications may require
highly accurate numerical models to obtain high fidelity predictions. Solutions of nonlinear PDEs
may develop discontinuities in finite time even if the initial condition is smooth. The inherent sta-
bility of DG methods produces adequate solutions but only for constant or linear approximations
and fine enough discretizations. Note, however, that standard high-order DG approximations require
further stabilization.

Limiting techniques have emerged as a solution for this problem. See, for instance, Runge–Kutta
discontinuous Galerkin (RKDG) methods [1, 2]. They are a special class of explicit RK schemes
[3–5] that combine with approximate Riemann solvers and nonlinear operators (i.e., slope limiters)
to satisfy stability. Limiters were initially designed in the context of finite volumes [6].

Classical adaptive procedures [1, 7], which are based on limiting techniques, drastically reduce
the order of the approximations in the vicinity of shocks. This induces a method called total vari-
ation bounded in the means, which at most is second order in space. Moreover, explicit RKDG
methods are at most fourth order in time. Note also that, to the authors’ knowledge, no implicit time
integration schemes have been developed in combination with slope limiters. In summary, standard
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limiting techniques add numerical diffusion of the order of the mesh size. This implies that mesh
adaption (refinement) procedures are needed. Recall that adaption should incorporate mesh direc-
tionality because shocks are lower dimensional structures. To overcome these drawbacks, methods
limiting high-order moments have been proposed [8, 9]. However, they also require refined meshes.

Another alternative is high-order non-oscillatory reconstruction. Researchers’ attention are
focused on essentially non-oscillatory and weighted essentially non-oscillatory techniques, see for
instance [4, 10], because they preserve nonlinear stability and retain the order of the interpolation
(using additional degrees of freedom [DOF] to resolve sharp profiles). However, their computational
overhead is excessive for high-order approximations, they require structured grids, and they may
loose robustness for high-order schemes. Other alternatives exploiting the DG inherent numerical
flux stabilization are possible [11].

Here, an obvious and, in principle, simple approach, already introduced in the 1950s [12], is advo-
cated: adding dissipation to obtain stable solutions. In fact, reincorporating this relevant physics [13]
in nonlinear hyperbolic conservation is not trivial. That is, the inherent difficulties in determining
where and how much viscosity must be introduced to avoid oscillations without causing unneces-
sary smearing have deterred the extensive use of this approach. Recently, in [14, 15], an artificial
viscosity term (based on the mesh size h and the degree of the interpolating polynomial p) has been
proposed in conjunction with a discontinuity detection procedure.

The introduction of dissipation in the equation does not hinder the use of high-order and implicit
schemes, in contrast with RKDG methods. Introducing an artificial viscosity that scales with the DG
resolution length scales, h=p, makes the shock width also scale in the same manner. Here, following
[16], the extensive experience in limiting techniques is used to define an artificial diffusion method.
The obtained value for the viscosity scales such as "�O.hk/ for some 16 k 6 p. Numerical tests
show consistently that hk is smaller than h=p, proposed in [14]. Moreover, sharp shock profiles
free of spurious oscillations are obtained. The order of the approximation is also maintained, and
the method allows to use coarse meshes. The artificial diffusion method is performed in combina-
tion with the shock sensor proposed in [14] to further ensure that no artificial diffusion is added in
smooth regimes.

Numerical examples suggest that constant element-by-element artificial diffusion is, in general,
sufficient. Nevertheless, an extension to piecewise constant diffusion inside each element is also
proposed. This subcell approach, although requiring further research, seems promising in the pres-
ence of large element with sharp shocks. In fact, subcell detection and viscosity show more accurate
solutions.

The introduction of the artificial viscosity term requires the discretization of second-order deriva-
tives with DG methods. Several DG methods have been proposed for elliptic operators [17–21].
Here, for simplicity, the local discontinuous Galerkin (LDG) approach of Cockburn and Shu [22] is
used, but other methods can also be employed, see for instance [21].

This paper is structured as follows: the LDG method is briefly presented in Section 2, mostly
for notation purposes. The necessary background related to slope limiting techniques is reviewed in
Sections 3.1 and 3.2. In Section 3.3, the proposed artificial diffusion technique is presented in detail,
and the discontinuity sensor is described in Section 3.4. Section 4 presents an extension to piecewise
constant subcell viscosity. Numerical tests demonstrate the efficiency of the method in Section 5.

2. THE BASICS OF LDG IN ONE DIMENSION

Consider a scalar conservation law

ut C fx.u/D 0, x 2�0, 1Œ, t > 0 (1)

and introduce a dissipative term, the artificial viscosity, of the form

ut C fx.u/� .".u/ux/x D 0, x 2�0, 1Œ, t > 0. (2)

Here, ".u/ is a non-negative quantity that models the artificial diffusion as a nonlinear coeffi-
cient depending on the solution u. Notice that adding viscosity to the original equations introduces
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second-order derivatives, which require special attention in discontinuous approximations. Several
methods have been proposed to deal with this situation; here, LDG has been used, see the seminal
paper [22].

To apply the LDG method, Equation (2) is written as a system of first-order hyperbolic equations,
typical of mixed methods

ut C fx.u/� �x D 0, x 2�0, 1Œ, t > 0 (3a)

� � ".u/ux D 0, x 2�0, 1Œ. (3b)

where the auxiliary variable � has been introduced. To simplify the developments and following
[22], the new variable g.u/ D

R u
".s/ ds is introduced, directly relate to � ; note that by using

Leibniz rule, it is easily demonstrated that � D gx.u/.
Let ¹IeºeD1,:::,J with Ie D Œxe , xeC1� be a partition of the interval Œ0, 1� into J subintervals, with

0D x1 < x2 < � � �< xJC1 D 1. Because of the discontinuity of the test functions, the integral form
of Equation (3) in DG is stated element by element. Consider test functions v and � in Pp.Ie/, with
Pp.Ie/ being the space of polynomial functions of total degree 6 p defined over Ie . An approxi-
mation to the exact solution of (3), also denoted by u and � in an abuse of notation, is obtained if

Z
Ie

utv dx �

Z
Ie

.f .u/� �/ vx dxC
h
OfeC1v.x

�
eC1/�

Ofev.x
C
e /
i
��

O�eC1v.x
�
eC1/� O�ev.x

C
e /
�
D 0 (4a)Z

Ie

�� dxC

Z
Ie

g.u/�x dx �
�
OgeC1�.x

�
eC1/� Oge�.x

C
e /
�
D 0 (4b)

for all v and � in Pp.Ie/ and for every element e D 1, : : : ,J and t > 0.
The nonlinear flux f .u/ has been replaced by numerical one Of D Of .u/, which is typically cho-

sen as the Roe or Lax-Friedrichs flux. For implementation details, see [20]. There are two other
fluxes due to LDG methods, O� and Og, which can be seen as approximations of the numerical traces
of � and g.u/ on the boundaries. Standard numerical fluxes are used here, see [22]. Note that at
interfaces, the following notation is used:

x˙e D lim
��!0

xe ˙ �.

It is usual to assume the ".u/ constant element by element, see [14]. Here, the same assumption
is used, and thus, for element e, g.u/D "eu, that is, Equation (4b) becomesZ

Ie

�� dxC

Z
Ie

"eu�x dx � "e
�
OueC1�

�
x�eC1

�
� Oue�

�
xCe
��
D 0.

Remark 1
Other assumptions for the distribution of ".u/ are possible. In particular, assuming continuous
".u/ precludes incoherences in (2) because of a discontinuous diffusion. This analysis, however,
is beyond the scope of the present paper.

3. PROPOSED APPROACH FOR THE ARTIFICIAL DIFFUSION

The computation of the amount of artificial viscosity is performed by combining the ideas of slope
limiters and shock-capturing methods. The popular RKDG method [20] and the generalization of
the classical slope limiter [1], ƒ…h, proposed in [8] provide a frame of reference for the present
work. The objective of this section is, first, to briefly describe the construction of RKDG method
and, second, to explain in detail how to compute the amount of artificial diffusion to introduce
in (2).
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3.1. RKDG methods

RKDG methods provide stable and high-order accurate schemes for nonlinear convection-
dominated problems. The DG space discretization, the special strong stability preserving RK time
discretizations, and the generalized slope limiters ƒ…h are intertwined just in the right way to
achieve nonlinear stability. Note that h is a characteristic measure of the elements.

Consider the conservation law (1) and approximate �fx.u/ by a DG space discretization. A sys-
tem of ODEs of the form ut D L.u/ is obtained. The total variation diminish RK (TVD RK) time
discretization scheme introduced in [3] is used to integrate the ODE system in time. Let ¹tnºnD0,:::,N

be a partition of Œ0,T �. The general form for an m-stage scheme reads as:

� Set u0 Dƒ…h.u0/, where u0 is the initial data for (1).
� For nD 0, : : : ,N � 1, compute unC1 from un as:

- Set u.0/ D un

- For `D 1, : : : ,m, compute the intermediate functions:

u.`/ Dƒ…h

�
unCk`

�
, unCk` D

`�1X
iD0

˛`iw
`i , w`i D u.i/C

ˇ`i

˛`i
L
�
u.i/

�

� Set unC1 D u.m/

where the coefficients ˛`i and ˇ`i must satisfy typical RK conditions, see [20]. This is the general
form of the RKDG methods. They are stable under a CFL condition, see [20], in the seminorm
j � jTV. That is, j NunC1jTV 6 j NunjTV where j NujTV D

P
e

j NueC1 � Nuej, with Nu being the average of u in

the element.
Notice that limiting techniques are implemented in two steps for each stage of the RKDG scheme.

First, the conservation law (1) is solved, and second, the limiting operator ƒ…h is applied.
Assuming time integration under enough regularity, the weak formulation for the k`�stage can

also be symbolically written, for all v 2 Pp.Ie/, e D 1, : : : ,J and t > 0, asZ
Ie

unCk`v dx D

Z
Ie

unv dxC

Z tnCk`

tn

²Z
Ie

f .u/vx dx �
h
OfeC1v.x

�
eC1/�

Ofev.x
C
e /
i³
dt ,

(5a)
and the limiting step is then applied

u.`/ Dƒ…h

�
unCk`

�
. (5b)

3.2. The nonlinear limiting operator

Slope limiting techniques rely on the construction of a nonlinear local projection operator ƒ…h

whose aim is to enforce nonlinear stability of the approximate solution. For simplicity, the approxi-
mate solution is expanded in terms of orthogonal Legendre polynomial; within each element Ie (for
all e D 1, : : : ,J ), the approximation of u may be written as

ue.x, t /D
pX
iD0

cei .t/ Pi .x/ (6)

where Pi are the Legendre polynomials normalized such that Pi .1/ D 1, and the DOF cei are the
so-called modal coefficients.

Biswas et al. [8] define a high-order slope limiter relying on the Total Varitation Diminishing
in the means (TVDM) version of the generalized one proposed in [1], which is designed for linear
approximations, that is, p D 1. The idea is to limit the solution by limiting its coefficients. Beginning
with the coefficient associated with the highest polynomial degree (i.e., for i D p,p�1, : : : , 1), the
coefficient cei is replaced by

Qcei Dminmod
�
cei ,
�
ceC1i�1 � c

e
i�1

�
=.2i � 1/,

�
cei�1 � c

e�1
i�1

�
=.2i � 1/

�
,
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with the usual definition:

minmod .a1, a2, a3/D

´
s min
16n63

janj if s D sign.a1/D sign.a2/D sign.a3/,

0 otherwise.

The limiter is active when Qcei ¤ c
e
i for any i . Thus, the reconstructed coefficient Qcei limits cei , which,

in the absence of discontinuities, is proportional to the i th derivative of the approximation. Obvi-
ously, to preclude spurious oscillations, higher order derivatives are limited first. The reconstructed
solution has typically the following structure

ƒ…h.u
e/.x, t /D

kX
iD0

cei .t/ Pi .x/C

pX
iDkC1

Qcei .t/ Pi .x/. (7)

A major improvement of this reconstruction is that rarely k is as low as 0, which is the default value
for the limiter proposed in [1].

In the next section, the proposed artificial viscosity approach is presented. Note that the super-
script e indicating the element number is dropped to simplify the presentation. The nonlinear
convection–diffusion equation, see (2), is solved instead of applying slope limiters to the numer-
ical solution of the nonlinear hyperbolic equation, see (1). The heuristics behind the construction of
approximate Riemann solvers and slope limiters described in [13] are the guiding lines to determine
an explicit expression for the artificial diffusion term. A relation between the artificial viscosity ".u/
in (2) and the limited solution, see (7), of (1) is established.

3.3. Artificial diffusion

Denote by u" the exact solution of (2). The weak form of this convection–diffusion equation isZ
Ie

u"t v dx �

Z
Ie

�
f .u"/� ".u"/u"x

�
vx dxC

��
f .u"/� " .u"/ u"x

�
v
�xeC1
xe
D 0 (8)

where the same partition proposed in Section 2 is used.
It is well known, see for instance [6,13], that for physical reasons, the correct solution, called the

entropy solution, is obtained when viscosity tends to zero, that is, " ! 0. Therefore, the entropy
solution at a given instant t is defined byZ

Ie

uv dx D lim
"!0

Z
Ie

u"v dx,

and analogously, the numerical flux, typical of DG methods, is

Ofe D lim
"!0

�
f .u".xe , t //� ".u

"/u"x.xe , t /
�

. (9)

Taking the limit as " goes to zero in (8) and by following the procedures developed in [13], the
following weak formulation is obtained:Z
Ie

utv dx �

Z
Ie

f .u/ vx dxC
h
OfeC1 v

�
x�eC1

�
� Ofe v

�
xCe
�i

C

Z
Ie

O".u/ uxvx dx D 0 (10)

where the last term in (8) has been replaced by
h
OfeC1 v

�
x�eC1

�
� Ofe v

�
xCe
�i

. The term containing

the artificial viscosity coefficient O".u/ is the so-called shock-capturing term, and it is determined in
what follows.

Remark 2
The numerical flux Of given by (9) can be reduced to an E-flux of the form Ofe D f .u.xe , t // such
as the Godunov flux, the Enquist-Osher flux, or the Lax-Friedrichs flux for �t small enough. For a
justification, see [23].
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Assuming again time integration under enough regularity, the weak formulation is then rewritten
asZ

Ie

u.`/v dx D

Z
Ie

unv dxC

Z tnCk`

tn

Z
Ie

f .u/ vx dxdt

�

Z tnCk`

tn

h
OfeC1 v

�
x�eC1

�
� Ofe v

�
xCe
�i
dt �

Z tnCk`

tn

Z
Ie

O".u/ uxvx dxdt . (11)

To determine the shock-capturing term, the RKDG scheme described in (5) is replaced into (11)
to obtain Z

Ie

ƒ…h

�
unCk`

�
v dx D

Z
Ie

unCk`v dx �

Z tnCk`

tn

Z
Ie

O".u/ uxvx dxdt . (12)

Assuming O" constant for x 2 Ie and t 2 Œtn, tnCk` �, an explicit expression for the artificial
diffusion coefficient is obtained

O"D

�Z
Ie

�
unCk` �ƒ…h

�
unCk`

��
v dx

	.  Z tnCk`

tn

Z
Ie

uxvx dxdt

!
(13)

where unCk` is the standard DG solution (not limited) obtained from (5a), and ƒ…h

�
unCk`

�
is the

reconstructed solution (5b), whose structure is described in (7).
In fact, for each Legendre polynomial v D Pi , i D 1, : : : ,p, a viscosity is obtained, say
¹O"iºiD1,:::,p . Thus, each viscosity O"i contains information of the reconstructed moment Qci . Of course,
from (7) and (13), it is obvious that O"i D 0 for i D 0, : : : , k.

By using the orthogonality and hierarchy of Legendre polynomials in (13), viscosities are readily
computed

O"i D
h2.cei � Qc

e
i /

2.2i C 1/

"Z tnCk`

tn

Z 1

�1

u�
dPi

d�
d�dt

#�1
for i D kC 1, : : : ,p, (14)

where h is the element size, and � are the local coordinates in the reference element Œ�1, 1�.
Only the maximum viscosity is retained because it corresponds to the lower order reconstructed

moment

O"Dmax¹O"kC1, : : : , O"pº D O"min¹i j Qce
i
¤ce
i
º (15)

and ensures that the method is slightly on the diffusive side.

3.3.1. Order of the introduced diffusion. There are two key points to ensure the success of a shock-
capturing method. First, it is crucial to preserve accuracy in smooth regions, and second, it is
required to obtain sharp shock profiles, thinner than the element size.

Assuming sufficient regularity in (13) and (15), the order of the introduced artificial diffusion can
be inferred by a simple analysis on the basis of the modal coefficients of the approximation.

Under this assumption, that is, in the absence of discontinuities, the DOF cej .t/ of an approxima-

tion of the form (6) scale as hj for j D 0, : : : ,p, see [9,24]. Moreover, by using basic orthogonality
properties of Legendre polynomials and assuming cj .t/ constant on Œtn, tnCkl �, a Taylor analysis of
(13) demonstrates that the introduced viscosity scales like

O"�

´
O
�
hkC1=�t

�
if k is even

O
�
hkC2=�t

�
if k is odd

where k is the last nonreconstructed moment in (7). Note that the time step �t is chosen to satisfy
the CFL condition in every step of the TVD-RKDG methods; consequently, �t �O.h/, see [20].
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In contrast with more standard approaches [1] that induce a shock profile of O.h/, the proposed
diffusion scales as O.hk/ for 16 k 6 p. Numerical examples indicate that, in general, k > 1. Thus,
accuracy is higher than the one in the shock regions. Moreover, the examples also show that for
relatively coarse meshes and high-order approximation, the proposed diffusion is smaller than those
proposed in [14, 15], which scales like O"�O.h=p/.

3.4. Shock detection

Introducing just the necessary diffusion is important, but it is also crucial to do it where it is needed.
In principle, with the approach proposed in the previous section, it may seem that there is no need for
any discontinuity sensor. Because if no limiting is necessary, the artificial diffusion is zero. Thus, in
a sense, the proposed approach already incorporates a discontinuity sensor. Nevertheless, as it will
become clear in the first numerical example, without a proper shock detection, the approach is over-
diffusive. Two key aspects contribute to this over-diffusion: constant element-by-element artificial
diffusion and the proposed algorithm that always takes the maximum computed diffusion. Using
the discontinuity sensor restricts the artificial diffusion to elements where it is absolutely necessary
and, moreover, reduces the computation overhead by evaluating the artificial diffusion only to the
elements detected.

The smoothness indicator proposed in [14] for each element is used here because it is very
efficient in the presence of high-order elements (standard in DG),

SIe D

�Z
Ie

ju� Ouj2 dx

	
�Z
Ie

juj2 dx

	
. (16)

Here, Ou represents the approximation of order p � 1 and u the approximation of order p.
Assuming that the polynomial expansion behaves like the Fourier one, the sensor gives an idea

of the regularity of the approximate solution. In particular, if SIe > p�4, the approximation u is
expected to be at most C0 for e D 1, : : : ,J . In this case, O" > 0 in Ie . Otherwise, the coefficients of
the approximate solution decay as expected, and no artificial diffusion is needed, see [25] for details.
This criterion is based on the well-known Fourier approximation properties [26]. Namely, for any
function f .x/ expanded in terms of a periodic Fourier approximation SF.f /D

P1
nD�1 gne

inx , if
f .x/ 2 Ck�1, and @kf =@xk is piecewise continuous, then jgnj � n�k for n �!1.

4. SUBCELL EXTENSION FOR THE ARTIFICIAL DIFFUSION METHOD

In this setting, the discontinuity sensor (16) is an element-based integral, and ".u/ takes constant
value within each element. However, from (2), one can think that the discrete approximation gen-
erated by the numerical scheme is an exact solution to a slightly perturbed PDE of the original
conservation law (1). According to this, the ideal diffusion should be a continuous function not
only depending on the solution but also point-wise defined, that is, ".u.x//. However, the shock
location for a given flow field is rarely known a priori, and the artificial viscosity cannot be a prede-
termined function in space. Moreover, a point-wise switch, based on purely local quantities, is not
yet a dependable option at higher order interpolations because of the severe numerical noise in the
shock layer.

Nevertheless, constant artificial viscosity within each element may have some drawbacks.
Namely, it spans over one element, which can be relatively large compared with the shock width,
and moreover, it introduces discontinuities in the derivatives that may lead to artificially nonsmooth
solutions.To address the former issue, in elements where the shock width is far more thinner than the
element size, a more local diffusion may be beneficial, especially in terms of accuracy. The piece-
wise discontinuous diffusion matter is not addressed here. However, the extension of the proposed
artificial diffusion into a division of subcells within each element, as proposed next, reduces the
diffusion jumps and, consequently, reduces slightly the influence of the diffusion jumps.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2012)
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4.1. Subcell shock detection

First, it is necessary to identify more precisely the shock within the element. To this purpose, the
computational element Ie is divided into small patches of size h=p, named subcells, and the dis-
continuity sensor (16) is applied over each one of them. This procedure is only performed in those
elements flagged by the element-wise discontinuity sensor.

Here, for simplicity, the subcells are a uniform partition of element Ie D Œxk , xkC1�. Equally
spaced interior nodes of the high-order mesh define the subdivision. Hence, each element is divided
into a set of p non-overlapping intervals of uniform size, that is,

Ie D

p[
lD1

I le with I le D ŒxkCŒ.l�1/=p�, xkC.l=p/�.

If the element is flagged by the element-wise discontinuity sensor, the discontinuity sensor is fur-
ther applied to each subcell I le for l D 1, : : : ,p. Note that this subdivision is only used to apply the
sensor to a low-order entity, that is, the computational mesh is not refined, and the solution is still
defined in the whole element Ie .

This procedure would, at best, increase the accuracy of the shock location with a detected region
of width h=p rather than one of size h. At worst, if all subcells flag the sensor, the size of the
detected area will still cover the element. Notice that increasing p improves the accuracy of this
adaptive procedure, while permitting the use of coarser meshes.

4.2. Subcell viscosity

Following this idea, the artificial diffusion could be defined within each element as a piecewise
function, providing then a closer approximation to the ideal point-wise viscosity.

Here, the simplest approach is considered, which for the examples studied here seems appropri-
ate. A piecewise constant viscosity within each subcell is computed by means of (13) and (15).
However, other approaches may be considered. For instance, a Gaussian function centered at the
detected region with deviation equal to the total length of the detected subcells is suggested in [15]
for element-wise viscosity.

5. NUMERICAL EXAMPLES

To demonstrate the capabilities of the proposed approach to preserve the accuracy and capture sharp
shock profiles, a variety of test problems are shown in this section. It will be compared with slope
limiting procedures, demonstrating the superiority of the proposed approach for both linear and
nonlinear problems. All tests have been performed with a third-order explicit RK scheme.

5.1. Linear advection

Here, two linear tests are proposed. First, transport of a sinus wave shows that the proposed method-
ology does not affect the optimal order of convergence of high-order DG methods. Second, a more
involved test convecting pulses and Gaussian functions is computed. Both examples are linear initial
value problems with periodic boundary conditions and can be defined as²

ut C ux D 0, �16 x < 1, t > 0
u.x, 0/D u0.x/.

5.1.1. Transport of a sinus wave. Table I shows error in the L1 norm for the initial condition
u0.x/ D sin.�x/ at time t D 2 for p D 1, 2, 3, 4 on uniform meshes having 16, 32, 64, 128,
and 256 elements. As expected, the optimal rate of convergence is obtained. Moreover, these errors
are at least one order of magnitude smaller compared with those presented in [9] with high-order
limiters. Obviously, in this regular linear problem, they are larger than the ones obtained when no
shock-capturing procedure is implemented. Table II shows the errors for the DG scheme directly
applied to the hyperbolic equation. Note that the accuracy difference between the shock-capturing
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Table I. Transport of a sinus wave: errors in L1 norm and rate of convergence.

N p D 1 p D 2 p D 3 p D 4

16 1.64e-02 2.78e-04 4.70e-06 9.10e-08
32 4.10e-03 2.0023 3.46e-05 3.0036 2.92e-07 4.0044 2.83e-09 5.0050
64 1.03e-03 2.0006 4.32e-06 3.0009 1.83e-08 4.0011 8.85e-11 5.0013
128 2.56e-04 2.0001 5.40e-07 3.0002 1.15e-09 4.0003 2.76e-12 5.0003
256 6.40e-05 2.0000 6.75e-08 3.0001 7.13e-11 4.0001 8.63e-14 5.0004

Table II. Transport of a sinus wave: errors in L1 norm without any shock-capturing method.

N p D 1 p D 2 p D 3 p D 4

16 2.47e-04 6.20e-08 2.06e-09 6.37e-10
32 1.47e-05 1.44e-09 1.26e-10 3.98e-11
64 8.92e-07 5.22e-11 7.86e-12 2.49e-12
128 5.48e-08 2.68e-12 4.91e-13 1.55e-13
256 3.39e-09 1.58e-13 3.07e-14 9.72e-15

scheme and the standard DG one decreases as the order of the method is increased. Thus, high-order
approximations with large elements present reasonable accuracy in smooth problems.

5.1.2. Transport of a combination of Gaussians and pulses. The same linear advection problem is
solved with the initial condition

u0.x/D

8̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
:̂

1
6
.G.x,ˇ, ´�ı/CG.x,ˇ, ´Cı/C 4G.x,ˇ, ´// if x 2 Œ�0.8,�0.6�,

1 if x 2 Œ�0.4,�0.2�,

1� j10.x � 0.1/j if x 2 Œ0, 0.2�,
1
6
.F.x,˛, a� ı/CG.x,˛, aC ı/C 4G.x,˛, a// if x 2 Œ0.4, 0.6�,

0 otherwise

where G.x,ˇ, ´/D exp.�ˇ.x � ´/2/, F.x,˛, a/D
p

max.1� ˛2.x � ˛/2, 0/, aD 0.5, ´D�0.7,
ı D 0.005, ˛ D 10, and ˇ D log 2=.36ı2/

The solution contains a combination of smooth but narrow Gaussian, a square pulse, a sharp tri-
angle, and a combination of half-ellipses. Moreover, to further accentuate the dissipation introduced
by the slope limiter or the artificial diffusion techniques, the solution is computed after a long time,
namely T D 8.

Figure 1 compares the artificial diffusion technique proposed here with the high-order limiter pro-
posed in [9] (described as moments in the figures). Comparisons between these two techniques are
always performed with the same number of DOF. In Figure 1(a), 400 DOF are employed; a mesh of
200 elements with p D 1 and one of 50 elements with p D 7 are used to compare these techniques.
Figure 1(b) corresponds to a mesh of 200 elements with p D 2 and one of 50 elements and p D 11.

In general, the artificial diffusion techniques outperform the high-order limiting scheme. This is
obvious for high-order elements, which is the natural approach in DG methods. Large high-order
elements with the proposed artificial diffusion technique resolve accurately the solution extrema. In
contrast, high-order limiting requires, as expected, smaller and low-order elements to capture the
features of the transported functions. In other words, it requires h-refinement.

Overshoots near discontinuities in u for the square pulse are observed for the artificial diffusion
technique. Low-order polynomial approximations present clear localized oscillations in the pulse,
see Figure 1. These overshoots should be expected in artificial diffusion methods if no unnecessary
added diffusion, which induce over-diffusive solutions, is introduced. Moreover, as noted in [15],
the discontinuous nature of the introduced viscosity also favors these overshoots. Nevertheless, it is
important to observe that these overshoots are almost negligible for high-order approximations.

Because the amount of artificial diffusion is directly proportional to the limited coefficients, in
principle, it seems that there is no need for any discontinuity sensor. If no limiting is necessary, the
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Figure 1. Combination of Gaussians and pulses: comparison between high-order slope limiter (moments)
and artificial diffusion: (a) 400 DOF: 200 elements with p D 1 (left) and 50 elements with p D 7 (right) and

(b) 600 DOF: 200 elements with p D 2 (left) and 50 elements with p D 11 (right).

artificial diffusion is zero. Thus, in a sense, the proposed approach already incorporates a disconti-
nuity sensor. Figure 2 compares the artificial diffusion scheme with and without the discontinuity
sensor for 200 and 50 elements. It is clear that such an approach is over-diffusive. Two key aspects
contribute to this over-diffusion: constant element-by-element artificial diffusion and the proposed
algorithm that always takes the maximum computed diffusion. Note, as previously shown, that
using the discontinuity sensor allows both to preclude an over-diffusive method and to reduce the
computation overhead only to the elements detected.
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Figure 2. Combination of Gaussians and pulses: no discontinuity sensor for 200 elements with p D 2 (left)
and 50 elements with p D 7 (right).
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5.2. Evolution to a steady convection-diffusion problem

Next, a linear convection–diffusion example is studied,8<
:
ut C ux � 	uxx D 1 in �0, 1Œ, t > 0,
u.0, t /D u.1, t /D 0,
u.x, 0/D 0.

For high Peclet numbers, the solution of this problem develops a sharp boundary layer at the right-
end of the domain, and the steady solution is reached in a short period of time. Results are presented
at t D 1.2 when the boundary layer is clearly developed. All computations are performed with
	 D 0.001, and discretizations are chosen such that Peclet is equal to 10. Here, the Peclet number is
defined as h=2p	. Note that the characteristic length is the characteristic nodal distance, which in
this case is the exact nodal distance because equally spaced nodal elements are employed.

As in the previous example, numerical tests show that the artificial diffusion method outper-
forms the high-order limiting technique, and in particular, it improves accuracy when coarse meshes
and high-order approximations are used. It also ensures smaller inter-element jumps. Polynomial
approximations up to p D 11 are considered, and the number of elements is chosen such that the
number of DOF is kept constant (or almost constant). Figure 3 compares results for a discretization
with 17 cubic elements and one with 5 elements of degree p D 11. Note, for instance, that limiting
techniques do not to capture the boundary layer.

Moreover, to show that the proposed viscosity is sufficient to capture small boundary layers and
non-oscillatory solutions, two artificial viscosity approaches are compared. The artificial diffusion
method proposed here, denoted by ", is compared with a technique that adds constant artificial vis-
cosity of order h=p, denoted by "h=p , as suggested in [14]. Results for the previous discretizations
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Figure 3. Evolution to a steady convection–diffusion problem: figures on the right show the detail around
the boundary layer: (a) 17 elements and p D 3 and (b) 5 elements and p D 11.
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Figure 4. Evolution to a steady convection–diffusion problem: comparison between a diffusion of order h=p
and the proposed technique: (a) 17 elements and p D 3 and (b) 5 elements and p D 11.
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Figure 5. Evolution to a steady convection–diffusion problem: evolution of artificial diffusion with time; the
order h=p viscosity is filled in gray, and the proposed diffusion as a solid black line; (left) p D 3 and (right)

p D 11.

are shown in Figure 4, for p D 3 on the top plots and p D 11 on the bottom ones. Qualitative similar
solution profiles are obtained with both techniques. However, numerical evidence indicates that the
added viscosity for the approach proposed here is smaller, for any degree of approximation, than
h=p. In fact, Figure 5 shows the amount of diffusion introduced in the last element at each time step
for both cases.

To further differentiate both artificial diffusion techniques, the L1 and L1 error norms are com-
puted in the region containing the boundary layer, that is, for 0.8 6 x 6 1. Results are shown in
Table III. The L1 error is also computed for the high-order limiter. The L1 error is not shown for
the slope limiting technique because it is too large in the vicinity of x D 1. Note that the proposed
methodology always presents the smallest errors.
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Table III. Evolution to a steady convection–diffusion problem: L1 and L1 error norms for x 2 Œ0.8, 1�.

L1 error L1 error

p D 3 p D 5 p D 8 p D 11 p D 3 p D 5 p D 8 p D 11

Limiter 0.0061 0.0154 0.0334 0.0438
"D h=p 0.0184 0.0111 0.0086 0.0062 0.8115 0.7721 0.7214 0.7493
" proposed 0.0133 0.0080 0.0070 0.0047 0.7437 0.7719 0.7001 0.6487
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Figure 6. Evolution to a steady convection–diffusion problem: comparison between the constant element-
by-element artificial diffusion approach and the subcell one. The region filled in gray is the subcell where

the artificial diffusion is nonzero.

Finally, Figure 6 shows the approximation of degree p D 11 over the mesh of 5 elements with the
subcell artificial diffusion technique. A zoom on two elements is also shown. The constant element-
by-element artificial diffusion approach imposes a finite viscosity on Œ0.8, 1�. But with the subcell
approach, the artificial diffusion is only added in a region ten times smaller, that is, h=.p � 1/.

5.3. Burgers’ equation

To generalize the previous conclusions also for nonlinear problems, the inviscid Burgers’ equation
with periodic boundary conditions is solved

²
ut C fx.u/D 0 in �0, 1Œ, t > 0,
u.x, 0/D 1

2
C sin.2�x/.

The solution of this problem forms a shock at t D 0.25 that moves to the right. Solutions are
compared at t D 0.5.

Figure 7 compares a high-order slope limiting procedure and the proposed artificial diffusion
technique. The problem is solved on a 10-element mesh with p D 5 and p D 10. Note that the
high-order limiter proposed in [8] gives, in this case, the same results for p D 5 and p D 10. High-
order limiting starts with the highest order coefficient and stops limiting when the solution is nearly
TVD. In this example, the adaptive limiter limits coefficients for both p D 5 and p D 10 to the same
order, which is� 5 ,and consequently, same results are obtained. On the contrary, for the artificial
diffusion method, accuracy improves as the degree is increased as well as the shock sharpness, see
Figure 8.

The proposed approach is also compared with a constant artificial viscosity of order h=p, denoted
by "h=p , as suggested in [14]. Figure 9 shows the obtained solution for p D 3, 5, 8, and 11 on a
10-element mesh. Both techniques produce similar shock profiles as the order of the approximation
is increased. Note, however, that the proposed viscosity is smaller than the one of order h=p.
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Figure 7. Burgers’ equation: comparison between high-order slope limiter and proposed method for p D 5
(left) and p D 10 (right).
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Figure 8. Burgers’ equation: artificial diffusion solution for p D 5 and p D 10 on a 10-element mesh, a
detail is presented on the right.
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Figure 9. Burgers’ equation: comparison between a diffusion of order h=p and the proposed technique for
a 10-element mesh with p D 3, 5, 8, and 11 from left to right and top to bottom.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2012)
DOI: 10.1002/fld



ONE-DIMENSIONAL SHOCK-CAPTURING FOR HIGH-ORDER DG METHODS

Figure 10. Burgers’ equation: evolution of the added viscosity for p D 8. Artificial diffusion of order h=p
(gray) and proposed diffusion (solid black line)
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Figure 11. Burgers’ equation: mean added viscosity during the computation for different degrees of
approximation and both artificial diffusion techniques.

Note that, in general, less added viscosity leads to less error. To better compare both approaches
as well as their accuracy, the total amount of introduced viscosity is computed. In contrast to the
previous example here, the shock evolves in time, and hence, it may change from one element to
another along the computation. Hence, to make a fair comparison, the total viscosity footprint is
computed as

Q".t/D

nelX
eD1

Z
�e

".x, t / dx for t 2 Œ0,T �. (17)

Figure 10 shows the evolution of the added diffusion for a discretization of degree p D 8 and a
mesh of 10 elements for both methods. The viscosity proposed here is always smaller than the one
of order h=p. Similar results are obtained for different discretizations. The mean value of the added
viscosity along all the process is also computed. That is,

N"D
1

T

Z T

0

Q".t/.

Figure 11 compares both artificial diffusion approaches for different degrees of approximation. Note
that the amount of viscosity required decreases as the degree of approximation increases.

Finally, the subcell artificial diffusion is also applied to the same 10-element mesh with p D 8,
see Figure 12. Note that the vertical dashed grid lines indicate the elements. On the left, at t D 0.25,
the shock lies inside one element. Whereas on the right, at t D 0.5, the shock spans between two
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Figure 12. Burgers’ equation: solution at time t D 0.25 (left) and t D 0.5 (right). The footprint diffusion is
added and is filled in gray.

Figure 13. Burgers’ equation: evolution of the viscosity for p D 8. Artificial diffusion of order h=p (gray),
element-wise diffusion (continuous line), and subcell diffusion (dashed line).

elements. In both cases, the area where viscosity is added is smaller than an element. Moreover, for
t D 0.5, instead of spreading the artificial diffusion over two elements, it is reduced to a small region
around their boundary.

The amount of added viscosity with the subcell detection is determined using Equation 17.
Figure 13 compares this approach with the previous ones and clearly shows that the subcell approach
reduces the total amount of added viscosity.

In summary, large high-order elements do not imply a more of artificial viscosity, and the subcell
approach induces qualitatively similar shock profiles and a smaller viscosity footprint.

5.4. Euler equations

Finally, to show the applicability of this approach to systems of nonlinear equations, the one-
dimensional Euler equations are solved for the classical Sod’s shock tube problem, see [27]. That
is, the one-dimensional Euler equations U t CF .U /x D 0 with

U D .
, 
v, 
E/T and F .U /D .
v, 
v2C p, .
E C p/v/T

are solved subject to the initial conditions

.
, v,p/D

²
.3, 0, 3/ if 06 x 6 0.5,
.1, 0, 1/ if 0.5 < x 6 1.

with � D 1.4.
The artificial diffusion approach consist in adding a nonconstant artificial viscosity tensor to the

previous system of conserved quantities. In fact, the proposed artificial diffusion approach is applied
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independently to the three uncoupled equations defined by the characteristic variables (also called
Riemann variables), see [28]. Recall that the one-dimensional Euler equations diagonalize with the
matrix of the right eigenvectors of the Jacobian of the flux F .U /. Thus, an artificial viscosity is
obtained for each equation. This diagonal tensor of added viscosities is mapped back into the con-
served variables by multiplication with the matrix of right eigenvectors, obtaining a nonconstant
artificial viscosity tensor for the system of conserved quantities.

Solution profiles at time t D 0.2 for density, velocity, and pressure for the Sod’s shock tube prob-
lem are reported in Figure 14. Note that entropy is the unique variable used in the discontinuity
sensor. These results are compared with high-order limiting techniques. Figure 14 demonstrates the
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Figure 14. Euler equations: comparison between high-order limiters with 300 DOF (left) and artificial
diffusion method with 132 DOF (right). (a) density (b) velocity and (c) pressure.
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Table IV. Euler equations: L1 errors within each variable.

Limiters Artificial diffusion


 1.08e-02 2.33e-03
v 8.30e-03 2.32e-04
p 2.75e-02 1.00e-03

superiority of the proposed approach. On the left, the limiter solution is plotted, and it is obtained
with 300 DOF (100 elements with p D 2). On the right, the results of the proposed approach are
depicted; they correspond to a discretization with 132 DOF (12 elements with p D 10). The arti-
ficial diffusion approach clearly shows sharper fronts with less than half the number of DOF. In
this transient problem, shocks, which in some cases are smaller than one element size, are captured
accurately with the artificial viscosity. Note also that no oscillations are noticeable.

Finally, Table IV shows theL1 error for both methods (high-order limiter and proposed approach).
The error is evaluated for each physical quantity, and as expected, the errors induced by the proposed
approach are one order smaller than the ones obtained with a high-order limiter.

6. CONCLUDING REMARKS

A novel artificial diffusion methodology for high-order discontinuous Galerkin methods is proposed.
In fact, the extensive experience in limiting techniques is used to define how much viscosity must
be introduced in this artificial diffusion method. That is, the equivalent viscosity introduced by a
high-order limiting technique is determined and then explicitly introduced in the equations. This
approach precludes reducing systematically to first-order the solution in the vicinity of the shock.
This is crucial because no mesh refinement is systematically required. Moreover, this approach con-
sistently introduces a diffusion smaller than O.h=p/, which, in general, also implies a more accurate
solution. A simple extension of the proposed approach further locates the shock within the element
in subcells smaller than the element size. Although explicit time integration is used here, artificial
viscosity can also be implemented in the framework of implicit integrators. Numerical examples
range from linear to nonlinear problems, as well as systems of equations. They all show that sharp
shock profiles, thinner than the element size, are obtained without the need of any refinement pro-
cedures. Moreover, they demonstrate the superiority of the proposed method in front of classical
limiting techniques and also its efficiency, in particular, when the polynomial degree is increased.
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