70 research outputs found

    Replication of LDL SWAs hits in PROSPER/PHASE as validation for future (pharmaco)genetic analyses

    Get PDF
    <p><b>Background:</b> The PHArmacogenetic study of Statins in the Elderly at risk (PHASE) is a genome wide association study in the PROspective Study of Pravastatin in the Elderly at risk for vascular disease (PROSPER) that investigates the genetic variation responsible for the individual variation in drug response to pravastatin. Statins lower LDL-cholesterol in general by 30%, however not in all subjects. Moreover, clinical response is highly variable and adverse effects occur in a minority of patients. In this report we first describe the rationale of the PROSPER/PHASE project and second show that the PROSPER/PHASE study can be used to study pharmacogenetics in the elderly.</p> <p><b>Methods:</b> The genome wide association study (GWAS) was conducted using the Illumina 660K-Quad beadchips following manufacturer's instructions. After a stringent quality control 557,192 SNPs in 5,244 subjects were available for analysis. To maximize the availability of genetic data and coverage of the genome, imputation up to 2.5 million autosomal CEPH HapMap SNPs was performed with MACH imputation software. The GWAS for LDL-cholesterol is assessed with an additive linear regression model in PROBABEL software, adjusted for age, sex, and country of origin to account for population stratification.</p> <p><b>Results:</b> Forty-two SNPs reached the GWAS significant threshold of p = 5.0e-08 in 5 genomic loci (APOE/APOC1; LDLR; FADS2/FEN1; HMGCR; PSRC1/CELSR5). The top SNP (rs445925, chromosome 19) with a p-value of p = 2.8e-30 is located within the APOC1 gene and near the APOE gene. The second top SNP (rs6511720, chromosome 19) with a p-value of p = 5.22e-15 is located within the LDLR gene. All 5 genomic loci were previously associated with LDL-cholesterol levels, no novel loci were identified. Replication in WOSCOPS and CARE confirmed our results.</p> <p><b>Conclusion:</b> With the GWAS in the PROSPER/PHASE study we confirm the previously found genetic associations with LDL-cholesterol levels. With this proof-of-principle study we show that the PROSPER/PHASE study can be used to investigate genetic associations in a similar way to population based studies. The next step of the PROSPER/PHASE study is to identify the genetic variation responsible for the variation in LDL-cholesterol lowering in response to statin treatment in collaboration with other large trials.</p&gt

    Inhibition of Lipoprotein-Associated Phospholipase A2 Ameliorates Inflammation and Decreases Atherosclerotic Plaque Formation in ApoE-Deficient Mice

    Get PDF
    Lipoprotein-associated phospholipase A2 (Lp-PLA2) is thought to play modulatory roles in the development of atherosclerosis. Here we evaluated the effects of a specific lp-PLA2 inhibitor on atherosclerosis in ApoE-deficient mice and its associated mechanisms.ApoE-deficient mice fed an atherogenic high-fat diet for 17 weeks were divided into two groups. One group was administered the specific lp-PLA2 inhibitor, darapladib (50 mg/kg/day; p.o.) daily for 6 weeks, while the control group was administered saline. We observed no differences in body weight and serum lipids levels between the two groups at the end of the dietary period. Notably, serum lp-PLA2 activity as well as hs-CRP (C-reactive protein) and IL-6 (Interleukin-6) levels were significantly reduced in the darapladib group, compared with the vehicle group, while the serum PAF (platelet-activating factor) levels were similar between the two groups. Furthermore, the plaque area through the arch to the abdominal aorta was reduced in the darapladib group. Another finding of interest was that the macrophage content was decreased while collagen content was increased in atherosclerotic lesions at the aortic sinus in the darapladib group, compared with the vehicle group. Finally, quantitative RT-PCR performed to determine the expression patterns of specific inflammatory genes at atherosclerotic aortas revealed lower expression of MCP-1, VCAM-1 and TNF-α in the darapladib group. inflammation and decreased plaque formation in ApoE-deficient mice, supporting an anti-atherogenic role during the progression of atherosclerosis

    Liver phospholipids fatty acids composition in response to different types of diets in rats of both sexes

    Get PDF
    Background: Dietary intake influence changes in fatty acids (FA) profiles in liver which plays a central role in fatty acid metabolism, triacylglycerol synthesis and energy homeostasis. We investigated the effects of 4-weeks treatment with milk-and fish-based diet, on plasma biochemical parameters and FA composition of liver phospholipids (PL) in rats of both sexes. Methods: Adult, 4 months old, Wistar rats of both sexes, were fed with different types of diets: standard, milk-based and fish-based, during 4 weeks. Analytical characterization of different foods was done. Biochemical parameters in plasma were determined. Fatty acid composition was analyzed by gas-chromatography. Statistical significance of FA levels was tested with two-way analysis of variance (ANOVA) using the sex of animals and treatment (type of diet) as factors on logarithmic or trigonometric transformed data. Results: Our results showed that both, milk-and fish-based diet, changed the composition and ratio of rat liver phospholipids FA, in gender-specific manner. Initially present sex differences appear to be dietary modulated. Although, applied diets changed the ratio of total saturated fatty acids (SFA), monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA), and effects were gender specific. Milk-based diet lowered SFA and elevated MUFA in males and increased PUFA in females vs. standard diet. The same diet decreased n-3, increased n-6 and n-6/n-3 ratio in males. Fish-based diet increased n-3, decreased n-6 and n-6/n-3 ratio vs. standard and milk-based diet in females. However, the ratio of individual FA in liver PL was also dietary-influenced, but with gender specific manner. While in females fish-based diet decreased AA (arachidonic acid) increased level of EPA (eicosapentaenoic acid), DPA (docosapentaenoic acid) and DHA (docosahexaenoic acid), the same diet elevated only DHA levels in males. Conclusion: Gender related variations in FA composition of rat liver PL were observed, and results have shown that those initial differences could be significantly modulated by the type of diet. Furthermore, the modulatory effects of milk-and fish-based diets on liver phospholipids FA profiles appeared to be sex-specific

    Circulating and PBMC Lp-PLA2 Associate Differently with Oxidative Stress and Subclinical Inflammation in Nonobese Women (Menopausal Status)

    Get PDF
    BACKGROUND: This study aimed to determine the association of lipoprotein-associated phospholipase A(2) (Lp-PLA(2)) activity in circulation and peripheral blood mononuclear cells (PBMCs) with inflammatory and oxidative stress markers in nonobese women and according to menopausal status. Lp-PLA(2) activity, a marker for cardiovascular risk is associated with inflammation and oxidative stress. METHODOLOGY/PRINCIPAL FINDINGS: Eighty postmenopausal women (53.0±4.05 yr) and 96 premenopausal women (39.7±9.25 yr) participated in this study. Lp-PLA(2) activities, interleukin (IL)-6, tumor necrosis factor (TNF)-α, and IL-1β in plasma as well as in PBMCs were measured. Plasma ox-LDL was also measured. Postmenopausal women demonstrated higher circulating levels of ox-LDL and IL-6, as well as IL-6, TNF-α, and IL-1β in PBMCs, than premenopausal women. In both groups, plasma Lp-PLA(2) activity positively correlated with Lp-PLA(2) activity in PBMCs and plasma ox-LDL. In premenopausal women, Lp-PLA(2) activities in plasma and PBMCs positively correlated with IL-6, TNF-α, and IL-1β in PBMCs. In postmenopausal women, plasma ox-LDL positively correlated with PBMC cytokine production. In subgroup analysis of postmenopausal women according to plasma ox-LDL level (median level: 48.715 U/L), a significant increase in Lp-PLA(2) activity in the plasma but not the PBMCs was found in the high ox-LDL subgroup. Plasma Lp-PLA(2) activity positively correlated with unstimulated PBMC Lp-PLA(2) activity in the low ox-LDL subgroup (r = 0.627, P<0.001), whereas in the high ox-LDL circulating Lp-PLA(2) activity positively correlated with plasma ox-LDL (r = 0.390, P = 0.014) but not with Lp-PLA(2) activity in PBMCs. CONCLUSIONS/SIGNIFICANCE: The lack of relation between circulating Lp-PLA(2) activity and Lp-PLA(2) activity in PBMCs was found in postmenopausal women with high ox-LDL. This may indicate other sources of circulating Lp-PLA(2) activity except PBMC in postmenopausal women with high ox-LDL. We also demonstrated that circulating Lp-PLA(2) and PBMC secreted Lp-PLA(2) associate differently with markers of oxidative stress and sub clinical inflammation in nonobese women, particularly according to the menopausal states

    Exome Chip Meta-analysis Fine Maps Causal Variants and Elucidates the Genetic Architecture of Rare Coding Variants in Smoking and Alcohol Use

    Get PDF
    BACKGROUND: Smoking and alcohol use have been associated with common genetic variants in multiple loci. Rare variants within these loci hold promise in the identification of biological mechanisms in substance use. Exome arrays and genotype imputation can now efficiently genotype rare nonsynonymous and loss of function variants. Such variants are expected to have deleterious functional consequences and to contribute to disease risk. METHODS: We analyzed similar to 250,000 rare variants from 16 independent studies genotyped with exome arrays and augmented this dataset with imputed data from the UK Biobank. Associations were tested for five phenotypes: cigarettes per day, pack-years, smoking initiation, age of smoking initiation, and alcoholic drinks per week. We conducted stratified heritability analyses, single-variant tests, and gene-based burden tests of nonsynonymous/loss-of-function coding variants. We performed a novel fine-mapping analysis to winnow the number of putative causal variants within associated loci. RESULTS: Meta-analytic sample sizes ranged from 152,348 to 433,216, depending on the phenotype. Rare coding variation explained 1.1% to 2.2% of phenotypic variance, reflecting 11% to 18% of the total single nucleotide polymorphism heritability of these phenotypes. We identified 171 genome-wide associated loci across all phenotypes. Fine mapping identified putative causal variants with double base-pair resolution at 24 of these loci, and between three and 10 variants for 65 loci. Twenty loci contained rare coding variants in the 95% credible intervals. CONCLUSIONS: Rare coding variation significantly contributes to the heritability of smoking and alcohol use. Fine-mapping genome-wide association study loci identifies specific variants contributing to the biological etiology of substance use behavior.Peer reviewe
    corecore