506 research outputs found
Acceptance, well-being, and goals in adolescents with chronic illness : a daily process analysis
Objective: The main aim of this study was to investigate the relationship between acceptance and well-being in adolescents with chronic illness from a daily process perspective. Furthermore, we explored the role of daily experienced interference and facilitation of life goals by treatment goals as mediating mechanisms.
Methods: Thirty-eight adolescents with cystic fibrosis (CF) or diabetes completed questionnaires assessing acceptance, negative life events and goal-related self-efficacy. Furthermore, an online diary assessing daily mood, daily experienced interference and facilitation of life goals by treatment goals was completed during three consecutive weeks.
Results: Acceptance of illness was positively related to daily well-being, but unrelated to daily goal interference and facilitation. Furthermore, daily goal interference and facilitation were unrelated to same-day and next-day well-being.
Conclusion: This study suggests that acceptance of illness plays an important role in the daily mood of adolescents with CF and diabetes. This relationship, however, was not mediated by daily experienced interference and facilitation of life goals by treatment goals. Further research is needed to determine whether interventions promoting acceptance are beneficial for adolescents with CF and diabetes
The Alvarez impact theory of mass extinction; limits to its applicability and the „great expectations syndrome”
For the past three decades, the Alvarez impact theory of mass extinction, causally related to catastrophic meteorite impacts, has been recurrently applied to multiple extinction boundaries. However, these multidisciplinary research efforts across the globe have been largely unsuccessful to date, with one outstanding exception: the Cretaceous-Paleogene boundary. The unicausal impact scenario as a leading explanation, when applied to the complex fossil record, has resulted in force-fitting of data and interpretations ("great expectations syndrome". The misunderstandings can be grouped at three successive levels of the testing process, and involve the unreflective application of the impact paradigm: (i) factual misidentification, i.e., an erroneous or indefinite recognition of the extraterrestrial record in sedimentological, physical and geochemical contexts, (ii) correlative misinterpretation of the adequately documented impact signals due to their incorrect dating, and (iii) causal overestimation when the proved impact characteristics are doubtful as a sufficient trigger of a contemporaneous global cosmic catastrophe. Examples of uncritical belief in the simple cause-effect scenario for the Frasnian-Famennian, Permian-Triassic, and Triassic-Jurassic (and the Eifelian-Givetian and Paleocene-Eocene as well) global events include mostly item-1 pitfalls (factual misidentification), with Ir enrichments and shocked minerals frequently misidentified. Therefore, these mass extinctions are still at the first test level, and only the F-F extinction is potentially seen in the context of item-2, the interpretative step, because of the possible causative link with the Siljan Ring crater (53 km in diameter). The erratically recognized cratering signature is often marked by large timing and size uncertainties, and item-3, the advanced causal inference, is in fact limited to clustered impacts that clearly predate major mass extinctions. The multi-impact lag-time pattern is particularly clear in the Late Triassic, when the largest (100 km diameter) Manicouagan crater was possibly concurrent with the end-Carnian extinction (or with the late Norian tetrapod turnover on an alternative time scale). The relatively small crater sizes and cratonic (crystalline rock basement) setting of these two craters further suggest the strongly insufficient extraterrestrial trigger of worldwide environmental traumas. However, to discuss the kill potential of impact events in a more robust fashion, their location and timing, vulnerability factors, especially target geology and palaeogeography in the context of associated climate-active volatile fluxes, should to be rigorously assessed. The current lack of conclusive impact evidence synchronous with most mass extinctions may still be somewhat misleading due to the predicted large set of undiscovered craters, particularly in light of the obscured record of oceanic impact events
Search for non-relativistic Magnetic Monopoles with IceCube
The IceCube Neutrino Observatory is a large Cherenkov detector instrumenting
of Antarctic ice. The detector can be used to search for
signatures of particle physics beyond the Standard Model. Here, we describe the
search for non-relativistic, magnetic monopoles as remnants of the GUT (Grand
Unified Theory) era shortly after the Big Bang. These monopoles may catalyze
the decay of nucleons via the Rubakov-Callan effect with a cross section
suggested to be in the range of to
. In IceCube, the Cherenkov light from nucleon decays
along the monopole trajectory would produce a characteristic hit pattern. This
paper presents the results of an analysis of first data taken from May 2011
until May 2012 with a dedicated slow-particle trigger for DeepCore, a
subdetector of IceCube. A second analysis provides better sensitivity for the
brightest non-relativistic monopoles using data taken from May 2009 until May
2010. In both analyses no monopole signal was observed. For catalysis cross
sections of the flux of non-relativistic
GUT monopoles is constrained up to a level of at a 90% confidence level,
which is three orders of magnitude below the Parker bound. The limits assume a
dominant decay of the proton into a positron and a neutral pion. These results
improve the current best experimental limits by one to two orders of magnitude,
for a wide range of assumed speeds and catalysis cross sections.Comment: 20 pages, 20 figure
An All-Sky Search for Three Flavors of Neutrinos from Gamma-Ray Bursts with the IceCube Neutrino Observatory
We present the results and methodology of a search for neutrinos produced in
the decay of charged pions created in interactions between protons and
gamma-rays during the prompt emission of 807 gamma-ray bursts (GRBs) over the
entire sky. This three-year search is the first in IceCube for shower-like
Cherenkov light patterns from electron, muon, and tau neutrinos correlated with
GRBs. We detect five low-significance events correlated with five GRBs. These
events are consistent with the background expectation from atmospheric muons
and neutrinos. The results of this search in combination with those of
IceCube's four years of searches for track-like Cherenkov light patterns from
muon neutrinos correlated with Northern-Hemisphere GRBs produce limits that
tightly constrain current models of neutrino and ultra high energy cosmic ray
production in GRB fireballs.Comment: 33 pages, 14 figures; minor changes made to match published version
in the Astrophysical Journal, 2016 June 2
Lateral Distribution of Muons in IceCube Cosmic Ray Events
In cosmic ray air showers, the muon lateral separation from the center of the
shower is a measure of the transverse momentum that the muon parent acquired in
the cosmic ray interaction. IceCube has observed cosmic ray interactions that
produce muons laterally separated by up to 400 m from the shower core, a factor
of 6 larger distance than previous measurements. These muons originate in high
pT (> 2 GeV/c) interactions from the incident cosmic ray, or high-energy
secondary interactions. The separation distribution shows a transition to a
power law at large values, indicating the presence of a hard pT component that
can be described by perturbative quantum chromodynamics. However, the rates and
the zenith angle distributions of these events are not well reproduced with the
cosmic ray models tested here, even those that include charm interactions. This
discrepancy may be explained by a larger fraction of kaons and charmed
particles than is currently incorporated in the simulations
The IceCube Neutrino Observatory: Instrumentation and Online Systems
The IceCube Neutrino Observatory is a cubic-kilometer-scale high-energy
neutrino detector built into the ice at the South Pole. Construction of
IceCube, the largest neutrino detector built to date, was completed in 2011 and
enabled the discovery of high-energy astrophysical neutrinos. We describe here
the design, production, and calibration of the IceCube digital optical module
(DOM), the cable systems, computing hardware, and our methodology for drilling
and deployment. We also describe the online triggering and data filtering
systems that select candidate neutrino and cosmic ray events for analysis. Due
to a rigorous pre-deployment protocol, 98.4% of the DOMs in the deep ice are
operating and collecting data. IceCube routinely achieves a detector uptime of
99% by emphasizing software stability and monitoring. Detector operations have
been stable since construction was completed, and the detector is expected to
operate at least until the end of the next decade.Comment: 83 pages, 50 figures; updated with minor changes from journal review
and proofin
Improved limits on dark matter annihilation in the Sun with the 79-string IceCube detector and implications for supersymmetry
We present an improved event-level likelihood formalism for including
neutrino telescope data in global fits to new physics. We derive limits on
spin-dependent dark matter-proton scattering by employing the new formalism in
a re-analysis of data from the 79-string IceCube search for dark matter
annihilation in the Sun, including explicit energy information for each event.
The new analysis excludes a number of models in the weak-scale minimal
supersymmetric standard model (MSSM) for the first time. This work is
accompanied by the public release of the 79-string IceCube data, as well as an
associated computer code for applying the new likelihood to arbitrary dark
matter models.Comment: 24 pages, 8 figs, 1 table. Contact authors: Pat Scott & Matthias
Danninger. Likelihood tool available at http://nulike.hepforge.org. v2: small
updates to address JCAP referee repor
- …