253 research outputs found

    Modulation of DNA damage tolerance in Escherichia coli recG and ruv strains by mutations affecting PriB, the ribosome and RNA polymerase

    Get PDF
    RecG is a DNA translocase that helps to maintain genomic integrity. Initial studies suggested a role in promoting recombination, a possibility consistent with synergism between recG and ruv null alleles and reinforced when the protein was shown to unwind Holliday junctions. In this article we describe novel suppressors of recG and show that the pathology seen without RecG is suppressed on reducing or eliminating PriB, a component of the PriA system for replisome assembly and replication restart. Suppression is conditional, depending on additional mutations that modify ribosomal subunit S6 or one of three subunits of RNA polymerase. The latter suppress phenotypes associated with deletion of priB, enabling the deletion to suppress recG. They include alleles likely to disrupt interactions with transcription anti-terminator, NusA. Deleting priB has a different effect in ruv strains. It provokes abortive recombination and compromises DNA repair in a manner consistent with PriB being required to limit exposure of recombinogenic ssDNA. This synergism is reduced by the RNA polymerase mutations identified. Taken together, the results reveal that RecG curbs a potentially negative effect of proteins that direct replication fork assembly at sites removed from the normal origin, a facility needed to resolve conflicts between replication and transcription

    TraR, a Homolog of a RNAP Secondary Channel Interactor, Modulates Transcription

    Get PDF
    Recent structural and biochemical studies have identified a novel control mechanism of gene expression mediated through the secondary channel of RNA Polymerase (RNAP) during transcription initiation. Specifically, the small nucleotide ppGpp, along with DksA, a RNAP secondary channel interacting factor, modifies the kinetics of transcription initiation, resulting in, among other events, down-regulation of ribosomal RNA synthesis and up-regulation of several amino acid biosynthetic and transport genes during nutritional stress. Until now, this mode of regulation of RNAP was primarily associated with ppGpp. Here, we identify TraR, a DksA homolog that mimics ppGpp/DksA effects on RNAP. First, expression of TraR compensates for dksA transcriptional repression and activation activities in vivo. Second, mutagenesis of a conserved amino acid of TraR known to be critical for DksA function abolishes its activity, implying both structural and functional similarity to DksA. Third, unlike DksA, TraR does not require ppGpp for repression of the rrnB P1 promoter in vivo and in vitro or activation of amino acid biosynthesis/transport genes in vivo. Implications for DksA/ppGpp mechanism and roles of TraR in horizontal gene transfer and virulence are discussed

    Association Between Overweight or Obesity and Household Income and Parental Body Mass Index in Australian Youth: Analysis of the Australian National Nutrition Survey, 1995

    Get PDF
    This study is a secondary data analysis based on the 1995 Australian National Nutrition Survey (NNS). A random subsample of 1581 school children aged 7 15 years old from the NNS was studied. The results show the prevalence of overweight, obesity and combined overweight and obesity was 10.6 20.9%, 3.7 7.2% and 15.6 25.7%, respectively. The odds ratio of overweight or obese boys with highest household income was significantly smaller than those with the lowest household income. The proportion of combined overweight and obesity in children whose parents were overweight or obese was significantly greater compared with those whose parents were not. The trend of increasing prevalence of overweight or obesity among children with increasing parental body mass index (BMI) was significant after adjusting for age except the trend of father's BMI for boys. This study provided baseline data on the recent prevalence of overweight or obesity of Australian school children using new international absolute BMI cut-off points. It indicated that young school girls (7 9 years) were more likely to be overweight or obese compared with boys, the prevalence rates of overweight or obesity in older boys (13 15 year) was significantly greater than in other age groups while in girls it was the opposite. The boys with lowest household income (017500)weremorelikelytobeoverweightorobesecomparedwiththosewiththehighesthouseholdincome(greaterthan0 17 500) were more likely to be overweight or obese compared with those with the highest household income (greater than 67 500). Having parents especially mothers who were overweight or obese may increase the risk of children being overweight or obese

    Bacterial activity in cystic fibrosis lung infections

    Get PDF
    BACKGROUND: Chronic lung infections are the primary cause of morbidity and mortality in Cystic Fibrosis (CF) patients. Recent molecular biological based studies have identified a surprisingly wide range of hitherto unreported bacterial species in the lungs of CF patients. The aim of this study was to determine whether the species present were active and, as such, worthy of further investigation as potential pathogens. METHODS: Terminal Restriction Fragment Length Polymorphism (T-RFLP) profiles were generated from PCR products amplified from 16S rDNA and Reverse Transcription Terminal Restriction Fragment Length Polymorphism (RT-T-RFLP) profiles, a marker of metabolic activity, were generated from PCR products amplified from 16S rRNA, both extracted from the same CF sputum sample. To test the level of activity of these bacteria, T-RFLP profiles were compared to RT-T-RFLP profiles. RESULTS: Samples from 17 individuals were studied. Parallel analyses identified a total of 706 individual T-RF and RT-T-RF bands in this sample set. 323 bands were detected by T-RFLP and 383 bands were detected by RT-T-RFLP (statistically significant; P ≀ 0.001). For the group as a whole, 145 bands were detected in a T-RFLP profile alone, suggesting metabolically inactive bacteria. 205 bands were detected in an RT-T-RFLP profile alone and 178 bands were detected in both, suggesting a significant degree of metabolic activity. Although Pseudomonas aeruginosa was present and active in many patients, a low occurrence of other species traditionally considered to be key CF pathogens was detected. T-RFLP profiles obtained for induced sputum samples provided by healthy individuals without CF formed a separate cluster indicating a low level of similarity to those from CF patients. CONCLUSION: These results indicate that a high proportion of the bacterial species detected in the sputum from all of the CF patients in the study are active. The widespread activity of bacterial species in these samples emphasizes the potential importance of these previously unrecognized species within the CF lung

    Connecting Health and Technology (CHAT): protocol of a randomized controlled trial to improve nutrition behaviours using mobile devices and tailored text messaging in young adults

    Get PDF
    Background: Increasing intakes of fruits and vegetables intake, in tandem with reducing consumption of energy-dense and nutrient poor foods and beverages are dietary priorities to prevent chronic disease. Although most adults do not eat enough fruit and vegetables, teenagers and young adults tend to have the lowest intakes. Young adults typically consume a diet which is inconsistent with the dietary recommendations. Yet little is known about the best approaches to improve dietary intakes and behaviours among this group. This randomised controlled trial aims to evaluate the effectiveness of using a mobile device to assess dietary intake, provide tailored dietary feedback and text messages to motivate changes in fruit, vegetable and junk food consumption among young adults

    High-Precision, Whole-Genome Sequencing of Laboratory Strains Facilitates Genetic Studies

    Get PDF
    Whole-genome sequencing is a powerful technique for obtaining the reference sequence information of multiple organisms. Its use can be dramatically expanded to rapidly identify genomic variations, which can be linked with phenotypes to obtain biological insights. We explored these potential applications using the emerging next-generation sequencing platform Solexa Genome Analyzer, and the well-characterized model bacterium Bacillus subtilis. Combining sequencing with experimental verification, we first improved the accuracy of the published sequence of the B. subtilis reference strain 168, then obtained sequences of multiple related laboratory strains and different isolates of each strain. This provides a framework for comparing the divergence between different laboratory strains and between their individual isolates. We also demonstrated the power of Solexa sequencing by using its results to predict a defect in the citrate signal transduction pathway of a common laboratory strain, which we verified experimentally. Finally, we examined the molecular nature of spontaneously generated mutations that suppress the growth defect caused by deletion of the stringent response mediator relA. Using whole-genome sequencing, we rapidly mapped these suppressor mutations to two small homologs of relA. Interestingly, stable suppressor strains had mutations in both genes, with each mutation alone partially relieving the relA growth defect. This supports an intriguing three-locus interaction module that is not easily identifiable through traditional suppressor mapping. We conclude that whole-genome sequencing can drastically accelerate the identification of suppressor mutations and complex genetic interactions, and it can be applied as a standard tool to investigate the genetic traits of model organisms

    The ΞΆ Toxin Induces a Set of Protective Responses and Dormancy

    Get PDF
    The ΞΆΞ΅ module consists of a labile antitoxin protein, Ξ΅, which in dimer form (Ξ΅2) interferes with the action of the long-living monomeric ΞΆ phosphotransferase toxin through protein complex formation. Toxin ΞΆ, which inhibits cell wall biosynthesis and may be bactericide in nature, at or near physiological concentrations induces reversible cessation of Bacillus subtilis proliferation (protective dormancy) by targeting essential metabolic functions followed by propidium iodide (PI) staining in a fraction (20–30%) of the population and selects a subpopulation of cells that exhibit non-inheritable tolerance (1–5Γ—10βˆ’5). Early after induction ΞΆ toxin alters the expression of ∼78 genes, with the up-regulation of relA among them. RelA contributes to enforce toxin-induced dormancy. At later times, free active ΞΆ decreases synthesis of macromolecules and releases intracellular K+. We propose that ΞΆ toxin induces reversible protective dormancy and permeation to PI, and expression of Ξ΅2 antitoxin reverses these effects. At later times, toxin expression is followed by death of a small fraction (∼10%) of PI stained cells that exited earlier or did not enter into the dormant state. Recovery from stress leads to de novo synthesis of Ξ΅2 antitoxin, which blocks ATP binding by ΞΆ toxin, thereby inhibiting its phosphotransferase activity

    A two-component regulator induces the transmission phenotype of stationary-phase Legionella pneumophila

    Full text link
    Pathogenic Legionella pneumophila evolved as a parasite of aquatic amoebae. To persist in the environment, the microbe must be proficient at both replication and transmission. In laboratory cultures, as nutrients become scarce a stringent response-like pathway coordinates exit from the exponential growth phase with induction of traits correlated with virulence, including motility. A screen for mutants that express the flagellin gene poorly identified five activators of virulence: LetA/LetS, a two-component regulator homologous to GacA/GacS of Pseudomonas and SirA/BarA of Salmonella ; the stationary-phase sigma factor RpoS; the flagellar sigma factor FliA; and a new locus, letE . Unlike wild type, post-exponential-phase letA and letS mutants were not motile, cytotoxic, sodium sensitive or proficient at infecting macrophages. L. pneumophila also required fliA to become motile, cytotoxic and to infect macrophages efficiently and letE to express sodium sensitivity and maximal motility and cytotoxicity. When induced to express RelA, all of the strains exited the exponential phase, but only wild type converted to the fully virulent form. In contrast, intracellular replication was independent of letA, letS, letE or fliA . Together, the data indicate that, as the nutrient supply wanes, ppGpp triggers a regulatory cascade mediated by LetA/ LetS, RpoS, FliA and letE that coordinates differentiation of replicating L. pneumophila to a transmissible form.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75531/1/j.1365-2958.2002.02884.x.pd

    The Stringent Response and Cell Cycle Arrest in Escherichia coli

    Get PDF
    The bacterial stringent response, triggered by nutritional deprivation, causes an accumulation of the signaling nucleotides pppGpp and ppGpp. We characterize the replication arrest that occurs during the stringent response in Escherichia coli. Wild type cells undergo a RelA-dependent arrest after treatment with serine hydroxamate to contain an integer number of chromosomes and a replication origin-to-terminus ratio of 1. The growth rate prior to starvation determines the number of chromosomes upon arrest. Nucleoids of these cells are decondensed; in the absence of the ability to synthesize ppGpp, nucleoids become highly condensed, similar to that seen after treatment with the translational inhibitor chloramphenicol. After induction of the stringent response, while regions corresponding to the origins of replication segregate, the termini remain colocalized in wild-type cells. In contrast, cells arrested by rifampicin and cephalexin do not show colocalized termini, suggesting that the stringent response arrests chromosome segregation at a specific point. Release from starvation causes rapid nucleoid reorganization, chromosome segregation, and resumption of replication. Arrest of replication and inhibition of colony formation by ppGpp accumulation is relieved in seqA and dam mutants, although other aspects of the stringent response appear to be intact. We propose that DNA methylation and SeqA binding to non-origin loci is necessary to enforce a full stringent arrest, affecting both initiation of replication and chromosome segregation. This is the first indication that bacterial chromosome segregation, whose mechanism is not understood, is a step that may be regulated in response to environmental conditions

    Interspecific comparisons of C\u3csub\u3e3\u3c/sub\u3e turfgrass for tennis use: I. Wear tolerance and carrying capacity under actual match play

    Get PDF
    Previous studies in the evaluation of wear tolerance have been conducted using wear simulators. Research to investigate wear tolerance of C3 turfgrasses under actual playing conditions and their carrying capacity is limited. Three grass tennis courts (replicates) maintained as official size (single) courts were constructed. Eight species and cultivars were randomized within the three courts (blocks): (1) β€˜Keeneland’ Kentucky bluegrass (KB, Poa pratensis L.), (2) β€˜Rubix’ KB, (3) β€˜Villa’ velvet bentgrass (VBG, Agrostis canina L.), (4) β€˜Puritan’ colonial bentgrass (CL, Agrostis capillaris L.), (5) β€˜007’ creeping bentgrass (CB, Agrostis stolonifera L.), (6) fine fescue (FF, Festuca spp.) mixture, (7) β€˜Karma’ perennial ryegrass (PR, Lolium perenne L.), and (8) β€˜Wicked’ PR. Injury at the baseline was measured by counting healthy grass on four dates in 2017 and 2019 using an intersect grid. Carrying capacity at the baseline was derived as hours of play to sustain 90, 80, 70, and 60% grass cover. After 6 wk of actual tennis play involving \u3e120 participating players in 2017 and 2019, KB and PR were superior to other C3 turfgrass for wear tolerance and carrying capacity. These two species exhibited four times the carrying capacity of FF species and nearly 60% more carrying capacity than bentgrass (BG) species. Species of BG afforded higher shoot density and better traction than KB and PR, with VBG exhibiting the best traction, and FF and PR exhibiting the poorest traction. In 2017, greater cell wall content increased wear tolerance and carrying capacity. Velvet bentgrass was as good as KB and PR in overall wear tolerance and carrying capacity under actual match play
    • …
    corecore