204 research outputs found

    Protein kinase CK2 is widely expressed in follicular, Burkitt and diffuse large B-cell lymphomas and propels malignant B-cell growth.

    Get PDF
    Serine-threonine kinase CK2 is highly expressed and pivotal for survival and proliferation in multiple myeloma, chronic lymphocytic leukemia and mantle cell lymphoma. Here, we investigated the expression of \u3b1 catalytic and \u3b2 regulatory CK2 subunits by immunohistochemistry in 57 follicular (FL), 18 Burkitt (BL), 52 diffuse large B-cell (DLBCL) non-Hodgkin lymphomas (NHL) and in normal reactive follicles. In silico evaluation of available Gene Expression Profile (GEP) data sets from patients and Western blot (WB) analysis in NHL cell-lines were also performed. Moreover, the novel, clinical-grade, ATP-competitive CK2-inhibitor CX-4945 (Silmitasertib) was assayed on lymphoma cells. CK2 was detected in 98.4% of cases with a trend towards a stronger CK2\u3b1 immunostain in BL compared to FL and DLBCL. No significant differences were observed between Germinal Center B (GCB) and non-GCB DLBCL types. GEP data and WB confirmed elevated CK2 mRNA and protein levels as well as active phosphorylation of specific targets in NHL cells. CX-4945 caused a dose-dependent growth-arresting effect on GCB, non-GCB DLBCL and BL cell-lines and it efficiently shut off phosphorylation of NF-\u3baB RelA and CDC37 on CK2 target sites. Thus, CK2 is highly expressed and could represent a suitable therapeutic target in BL, FL and DLBCL NHL

    The Importance of Cerebellar Connectivity on Simulated Brain Dynamics

    Get PDF
    The brain shows a complex multiscale organization that prevents a direct understanding of how structure, function and dynamics are correlated. To date, advances in neural modeling offer a unique opportunity for simulating global brain dynamics by embedding empirical data on different scales in a mathematical framework. The Virtual Brain (TVB) is an advanced data-driven model allowing to simulate brain dynamics starting from individual subjects’ structural and functional connectivity obtained, for example, from magnetic resonance imaging (MRI). The use of TVB has been limited so far to cerebral connectivity but here, for the first time, we have introduced cerebellar nodes and interconnecting tracts to demonstrate the impact of cerebro-cerebellar loops on brain dynamics. Indeed, the matching between the empirical and simulated functional connectome was significantly improved when including the cerebro-cerebellar loops. This positive result should be considered as a first step, since issues remain open about the best strategy to reconstruct effective structural connectivity and the nature of the neural mass or mean-field models generating local activity in the nodes. For example, signal processing is known to differ remarkably between cortical and cerebellar microcircuits. Tackling these challenges is expected to further improve the predictive power of functional brain activity simulations, using TVB or other similar tools, in explaining not just global brain dynamics but also the role of cerebellum in determining brain states in physiological conditions and in the numerous pathologies affecting the cerebro-cerebellar loop

    I sistemi carbonatici giurassici della Sardegna orientale (Golfo di Orosei) ed eventi deposizionali nel sistema carbonatico giurassico-cretacico della Nurra (Sardegna nord-occidentale)

    Get PDF
    This field trip gives a panoramic of the facies association and sedimentological-stratigraphic evolution of Jurassic-Cretaceous depositional systems of eastern (Golfo di Orosei) and western (Nurra) Sardinia. Carbonate deposition in western Sardinia occurred in an epeiric sea during Jurassic and Cretaceous whereas carbonates of the eastern Sardinia figure out a complex depositional settings with intraplatformal basins facing the Alpine Tethys from a basal transgression in the Bajocian to Berriasian. The presence of partly coeval succession allows a comparison between these two depositional systems and highlights relation with global and regional events. The Jurassic-Cretaceous carbonate succession of Sardinia shows similarities with coeval succession of the Provencal-Pyrenean domain (Nurra), nevertheless differences, both in terms of facies characters and distribution and range of stratigraphic gaps, occur between the successions of eastern Sardinia. These differences can be ascribed to different paleogeographic and depositional settings

    New discrete and polymeric supramolecular architectures derived from dinuclear Co(II), Ni(II) and Cu(II) complexes of aryl-linked bis-beta-diketonato ligands and nitrogen bases: synthetic, structural and high pressure studies

    Get PDF
    New examples of nitrogen base adducts of dinuclear Co(II), Ni(II) and Cu(II) complexes of the doubly deprotonated forms of 1,3-aryl linked bis-β-diketones of type [RC([double bond, length as m-dash]O)CH2C([double bond, length as m-dash]O)C6H4C([double bond, length as m-dash]O)CH2C([double bond, length as m-dash]O)R] (L1H2) incorporating the mono- and difunctional amine bases pyridine (Py), 4-ethylpyridine (EtPy), piperidine (pipi), 1,4-piperazine (pip), N-methylmorpholine (mmorph), 1,4-dimethylpiperazine (dmpip) and N,N,N′,N′-tetramethylethylenediamine (tmen) have been synthesised by reaction of the previously reported [Cu2(L1)2]·2.5THF (R = Me), [Cu2(L1)2(THF)2] (R = t-Bu), [Ni2(L1)2(Py)4] (R = t-Bu) and [Co2(L1)2(Py)4] (R = t-Bu) complexes with individual bases of the above type. Comparative X-ray structural studies involving all ten base adduct derivatives have been obtained and reveal a range of interesting discrete and polymeric molecular architectures. The respective products have the following stoichiometries: [Cu2(L1)2(Py)2]·Py (R = Me), [Cu2(L1)2(EtPy)2]·2EtPy (R = t-Bu), [Cu2(L1)2(pipi)2]·2pipi (R = t-Bu), [Cu2(L1)2(mmorph)2] (R = t-Bu), [Cu2(L1)2(tmen)2] (R = t-Bu) and {[Cu2(L1)2(pip)]·pip·2THF}n, [Co2(L1)2(tmen)2] (R = t-Bu), [Ni2(L1)2(Py)4]·dmpip (R = t-Bu), [Ni2(L1)2(pipi)4]·pipi (R = t-Bu) and [Ni2(L1)2(tmen)2] (R = t-Bu). The effect of pressure on the X-ray structure of [Cu2(L1)2(mmorph)2] has been investigated. An increase in pressure from ambient to 9.1 kbar resulted in modest changes to the unit cell parameters as well as a corresponding decrease of 6.7 percent in the unit cell volume. While a small ‘shearing’ motion occurs between adjacent molecular units throughout the lattice, no existing bonds are broken or new bonds formed

    Adaptive Robotic Control Driven by a Versatile Spiking Cerebellar Network

    Get PDF
    The cerebellum is involved in a large number of different neural processes, especially in associative learning and in fine motor control. To develop a comprehensive theory of sensorimotor learning and control, it is crucial to determine the neural basis of coding and plasticity embedded into the cerebellar neural circuit and how they are translated into behavioral outcomes in learning paradigms. Learning has to be inferred from the interaction of an embodied system with its real environment, and the same cerebellar principles derived from cell physiology have to be able to drive a variety of tasks of different nature, calling for complex timing and movement patterns. We have coupled a realistic cerebellar spiking neural network (SNN) with a real robot and challenged it in multiple diverse sensorimotor tasks. Encoding and decoding strategies based on neuronal firing rates were applied. Adaptive motor control protocols with acquisition and extinction phases have been designed and tested, including an associative Pavlovian task (Eye blinking classical conditioning), a vestibulo-ocular task and a perturbed arm reaching task operating in closed-loop. The SNN processed in real-time mossy fiber inputs as arbitrary contextual signals, irrespective of whether they conveyed a tone, a vestibular stimulus or the position of a limb. A bidirectional long-term plasticity rule implemented at parallel fibers-Purkinje cell synapses modulated the output activity in the deep cerebellar nuclei. In all tasks, the neurorobot learned to adjust timing and gain of the motor responses by tuning its output discharge. It succeeded in reproducing how human biological systems acquire, extinguish and express knowledge of a noisy and changing world. By varying stimuli and perturbations patterns, real-time control robustness and generalizability were validated. The implicit spiking dynamics of the cerebellar model fulfill timing, prediction and learning functions.European Union (Human Brain Project) REALNET FP7-ICT270434 CEREBNET FP7-ITN238686 HBP-60410
    • …
    corecore