105 research outputs found

    Quaternary structure predictions of transmembrane proteins starting from the monomer: a docking-based approach

    Get PDF
    BACKGROUND: We introduce a computational protocol for effective predictions of the supramolecular organization of integral transmembrane proteins, starting from the monomer. Despite the demonstrated constitutive and functional importance of supramolecular assemblies of transmembrane subunits or proteins, effective tools for structure predictions of such assemblies are still lacking. Our computational approach consists in rigid-body docking samplings, starting from the docking of two identical copies of a given monomer. Each docking run is followed by membrane topology filtering and cluster analysis. Prediction of the native oligomer is therefore accomplished by a number of progressive growing steps, each made of one docking run, filtering and cluster analysis. With this approach, knowledge about the oligomerization status of the protein is required neither for improving sampling nor for the filtering step. Furthermore, there are no size-limitations in the systems under study, which are not limited to the transmembrane domains but include also the water-soluble portions. RESULTS: Benchmarks of the approach were done on ten homo-oligomeric membrane proteins with known quaternary structure. For all these systems, predictions led to native-like quaternary structures, i.e. with C(α)-RMSDs lower than 2.5 Å from the native oligomer, regardless of the resolution of the structural models. CONCLUSION: Collectively, the results of this study emphasize the effectiveness of the prediction protocol that will be extensively challenged in quaternary structure predictions of other integral membrane proteins

    Cytotoxicity of ascorbate, lipoic acid, and other antioxidants in hollow fibre in vitro tumours

    Get PDF
    Vitamin C (ascorbate) is toxic to tumour cells, and has been suggested as an adjuvant cancer treatment. Our goal was to determine if ascorbate, in combination with other antioxidants, could kill cells in the SW620 hollow fibre in vitro solid tumour model at clinically achievable concentrations. Ascorbate anti-cancer efficacy, alone or in combination with lipoic acid, vitamin K 3, phenyl ascorbate, or doxorubicin, was assessed using annexin V staining and standard survival assays. 2-day treatments with 10 mM ascorbate increased the percentage of apoptotic cells in SW620 hollow fibre tumours. Lipoic acid synergistically enhanced ascorbate cytotoxicity, reducing the 2-day LC 50 in hollow fibre tumours from 34 mM to 4 mM. Lipoic acid, unlike ascorbate, was equally effective against proliferating and non-proliferating cells. Ascorbate levels in human blood plasma were measured during and after intravenous ascorbate infusions. Infusions of 60 g produced peak plasma concentrations exceeding 20 mM with an area under the curve (24 h) of 76 mM h. Thus, tumoricidal concentrations may be achievable in vivo. Ascorbate efficacy was enhanced in an additive fashion by phenyl ascorbate or vitamin K 3. The effect of ascorbate on doxorubicin efficacy was concentration dependent; low doses were protective while high doses increased cell killing. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Quiescience as a mechanism for cyclical hypoxia and acidosis

    Get PDF
    Tumour tissue characteristically experiences fluctuations in substrate supply. This unstable microenvironment drives constitutive metabolic changes within cellular populations and, ultimately, leads to a more aggressive phenotype. Previously, variations in substrate levels were assumed to occur through oscillations in the hæmodynamics of nearby and distant blood vessels. In this paper we examine an alternative hypothesis, that cycles of metabolite concentrations are also driven by cycles of cellular quiescence and proliferation. Using a mathematical modelling approach, we show that the interdependence between cell cycle and the microenvironment will induce typical cycles with the period of order hours in tumour acidity and oxygenation. As a corollary, this means that the standard assumption of metabolites entering diffusive equilibrium around the tumour is not valid; instead temporal dynamics must be considered

    Emergent Properties of Tumor Microenvironment in a Real-life Model of Multicell Tumor Spheroids

    Get PDF
    Multicellular tumor spheroids are an important {\it in vitro} model of the pre-vascular phase of solid tumors, for sizes well below the diagnostic limit: therefore a biophysical model of spheroids has the ability to shed light on the internal workings and organization of tumors at a critical phase of their development. To this end, we have developed a computer program that integrates the behavior of individual cells and their interactions with other cells and the surrounding environment. It is based on a quantitative description of metabolism, growth, proliferation and death of single tumor cells, and on equations that model biochemical and mechanical cell-cell and cell-environment interactions. The program reproduces existing experimental data on spheroids, and yields unique views of their microenvironment. Simulations show complex internal flows and motions of nutrients, metabolites and cells, that are otherwise unobservable with current experimental techniques, and give novel clues on tumor development and strong hints for future therapies.Comment: 20 pages, 10 figures. Accepted for publication in PLOS One. The published version contains links to a supplementary text and three video file

    A general reaction-diffusion model of acidity in cancer invasion

    Get PDF
    We model the metabolism and behaviour of a developing cancer tumour in the context of its microenvironment, with the aim of elucidating the consequences of altered energy metabolism. Of particular interest is the Warburg Effect, a widespread preference in tumours for cytosolic glycolysis rather than oxidative phosphorylation for glucose breakdown, as yet incompletely understood. We examine a candidate explanation for the prevalence of the Warburg Effect in tumours, the acid-mediated invasion hypothesis, by generalising a canonical non-linear reaction–diffusion model of acid-mediated tumour invasion to consider additional biological features of potential importance. We apply both numerical methods and a non-standard asymptotic analysis in a travelling wave framework to obtain an explicit understanding of the range of tumour behaviours produced by the model and how fundamental parameters govern the speed and shape of invading tumour waves. Comparison with conclusions drawn under the original system—a special case of our generalised system—allows us to comment on the structural stability and predictive power of the modelling framework

    Anti-angiogenic effect of high doses of ascorbic acid

    Get PDF
    Pharmaceutical doses of ascorbic acid (AA, vitamin C, or its salts) have been reported to exert anticancer activity in vitro and in vivo. One proposed mechanism involves direct cytotoxicity mediated by accumulation of ascorbic acid radicals and hydrogen peroxide in the extracellular environment of tumor cells. However, therapeutic effects have been reported at concentrations insufficient to induce direct tumor cell death. We hypothesized that AA may exert anti-angiogenic effects. To test this, we expanded endothelial progenitor cells (EPCs) from peripheral blood and assessed, whether or not high dose AA would inhibit EPC ability to migrate, change energy metabolism, and tube formation ability. We also evaluated the effects of high dose AA on angiogenic activities of HUVECs (human umbilical vein endothelial cells) and HUAECs (human umbilical arterial endothelial cells). According to our data, concentrations of AA higher than 100 mg/dl suppressed capillary-like tube formation on Matrigel for all cells tested and the effect was more pronounced for progenitor cells in comparison with mature cells. Co-culture of differentiated endothelial cells with progenitor cells showed that there was incorporation of EPCs in vessels formed by HUVECs and HUAECs. Cell migration was assessed using an in vitro wound healing model. The results of these experiments showed an inverse correlation between AA concentrations relative to both cell migration and gap filling capacity. Suppression of NO (nitric oxide) generation appeared to be one of the mechanisms by which AA mediated angiostatic effects. This study supports further investigation into non-cytotoxic antitumor activities of AA

    Metabolic alterations during the growth of tumour spheroids

    Get PDF
    Solid tumours undergo considerable alterations in their metabolism of nutrients in order to generate sufficient energy and biomass for sustained growth and proliferation. During growth, the tumour microenvironment exerts a number of influences (e.g. hypoxia and acidity) that affect cellular biology and the flux or utilisation of fuels including glucose. The tumour spheroid model was used to characterise the utilisation of glucose and describe alterations to the activity and expression of key glycolytic enzymes during the tissue growth curve. Glucose was avidly consumed and associated with the production of lactate and an acidified medium, confirming the reliance on glycolytic pathways and a diminution of oxidative phosphorylation. The expression levels and activities of hexokinase, phosphofructokinase-1, pyruvate kinase and lactate dehydrogenase in the glycolytic pathway were measured to assess glycolytic capacity. Similar measurements were made for glucose-6-phosphate dehydrogenase, the entry point and regulatory step of the pentose-phosphate pathway (PPP) and for cytosolic malate dehydrogenase, a key link to TCA cycle intermediates. The parameters for these key enzymes were shown to undergo considerable variation during the growth curve of tumour spheroids. In addition, they revealed that the dynamic alterations were influenced by both transcriptional and posttranslational mechanisms

    Metabolic alterations during the growth of tumour spheroids

    Get PDF
    Solid tumours undergo considerable alterations in their metabolism of nutrients in order to generate sufficient energy and biomass for sustained growth and proliferation. During growth, the tumour microenvironment exerts a number of influences (e.g. hypoxia and acidity) that affect cellular biology and the flux or utilisation of fuels including glucose. The tumour spheroid model was used to characterise the utilisation of glucose and describe alterations to the activity and expression of key glycolytic enzymes during the tissue growth curve. Glucose was avidly consumed and associated with the production of lactate and an acidified medium, confirming the reliance on glycolytic pathways and a diminution of oxidative phosphorylation. The expression levels and activities of hexokinase, phosphofructokinase-1, pyruvate kinase and lactate dehydrogenase in the glycolytic pathway were measured to assess glycolytic capacity. Similar measurements were made for glucose-6-phosphate dehydrogenase, the entry point and regulatory step of the pentose-phosphate pathway (PPP) and for cytosolic malate dehydrogenase, a key link to TCA cycle intermediates. The parameters for these key enzymes were shown to undergo considerable variation during the growth curve of tumour spheroids. In addition, they revealed that the dynamic alterations were influenced by both transcriptional and posttranslational mechanisms

    Knowledge and health care resource allocation: CME/CPD course guidelines-based efficacy.

    Get PDF
    BACKGROUND: Most health care systems consider continuing medical education a potential tool to improve quality of care and reduce disease management costs. Its efficacy in general practitioners needs to be further explored. OBJECTIVE: This study assesses the effectiveness of a one-year continuing medical education/continuing professional development course for general practitioners, regarding the improvement in knowledge of ARIA and GINA guidelines and compliance with them in asthma management. METHODS: Sixty general practitioners, covering 68,146 inhabitants, were randomly allocated to continuing medical education/continuing professional development (five residential events +four short distance-learning refresher courses over one year) or no training. Participants completed a questionnaire after each continuing medical education event; key questions were repeated at least twice. The Local Health Unit prescription database was used to verify prescription habits (diagnostic investigations and pharmacological therapy) and hospitalizations over one year before and after training. RESULTS: Fourteen general practitioners (46.7%) reached the cut-off of 50% attendance of the training courses. Knowledge improved significantly after training (p < 0.001, correct answers to key questions +13%). Training resulted in pharmaceutical cost containment (trained general practitioners +0.5% vs. controls +18.8%) and greater attention to diagnosis and monitoring (increase in spirometry +63.4%, p < 0.01). CONCLUSION: This study revealed an encouraging impact of educational events on improvement in general practitioner knowledge of guidelines and daily practice behavioral changes. Long-term studies of large populations are required to assess the effectiveness of education on the behavior of physicians in asthma management, and to establish the best format for educational events
    • …
    corecore