46 research outputs found

    InvasiBES: Understanding and managing the impacts of Invasive alien species on Biodiversity and Ecosystem Services

    Get PDF
    Invasive Alien Species (IAS) are amongst the most significant drivers of species extinction and ecosystem degradation, causing negative impacts on ecosystem services and human well-being. InvasiBES, a project funded by BiodivERsA-Belmont Forum for 2019–2021, will use data and models across scales, habitats and species to understand and anticipate the multi-faceted impacts of IAS and to provide tools for their management. Using Alien Species Narratives as reference, we will design future intervention scenarios focused on prevention, control and eradication of IAS in Europe and the United States, through a participatory process bringing together the expertise of scientists and stakeholders. We will also adapt current impact assessment protocols to assess both the detrimental and beneficial impacts of IAS on biodiversity and ecosystem services. This information will then be combined with maps of the potential distribution of Invasive Species of Interest in Europe under current and future climate-change scenarios. Likewise, we will anticipate areas under risk of invasion by range-shifting plants of concern in the US. Finally, focusing on three local-scale studies that cover a range of habitats (freshwater, terrestrial and marine), invasive species (plants and animals) and ecosystem services (supporting, provisioning, regulating and cultural), we will use empirical field data to quantify the real-world impacts of IAS on biodiversity and ecosystem services and calculate indicators of ecosystem recovery after the invader is removed. Spatial planning tools (InVEST) will be used to evaluate the costs and benefits of species-specific intervention scenarios at the regional scale. Data, models and maps, developed throughout the project, will serve to build scenarios and models of biodiversity and ecosystem services that are relevant to underpin management of IAS at multiple scales

    Temperature Tolerance and Stress Proteins as Mechanisms of Invasive Species Success

    Get PDF
    Invasive species are predicted to be more successful than natives as temperatures increase with climate change. However, few studies have examined the physiological mechanisms that theoretically underlie this differential success. Because correlative evidence suggests that invasiveness is related to the width of a species' latitudinal range, it has been assumed – but largely untested – that range width predicts breadth of habitat temperatures and physiological thermotolerances. In this study, we use empirical data from a marine community as a case study to address the hypotheses that (1) geographic temperature range attributes are related to temperature tolerance, leading to greater eurythermality in invasive species, and (2) stress protein expression is a subcellular mechanism that could contribute to differences in thermotolerance. We examined three native and six invasive species common in the subtidal epibenthic communities of California, USA. We assessed thermotolerance by exposing individuals to temperatures between 14°C and 31°C and determining the temperature lethal to 50% of individuals (LT50) after a 24 hour exposure. We found a strong positive relationship between the LT50 and both maximum habitat temperatures and the breadth of temperatures experience across the species' ranges. In addition, of the species in our study, invasives tended to inhabit broader habitat temperature ranges and higher maximum temperatures. Stress protein expression may contribute to these differences: the more thermotolerant, invasive species Diplosoma listerianum expressed higher levels of a 70-kDa heat-shock protein than the less thermotolerant, native Distaplia occidentalis for which levels declined sharply above the LT50. Our data highlight differences between native and invasive species with respect to organismal and cellular temperature tolerances. Future studies should address, across a broader phylogenetic and ecosystem scope, whether this physiological mechanism has facilitated the current success of invasive species and could lead to greater success of invasives than native species as global warming continues

    Supporting information: The EICAT+ framework enables classification of positive impacts of alien taxa on native biodiversity [dataset]

    Get PDF
    Supporting information A in S1 File. Glossary of additional key terms. Supporting information B in S1 File. Table reporting contrasting arguments and approaches used to define how alien taxa are considered and should be managed in accordance with different conservation values/motivations. As multiple values/motivations exist and determine which entities we are interested in (see also Supporting information A), distinct conservation targets can be identified. Note that here, we only consider conservation values/motivations that are expressed regardless of any nature’s instrumental (utilitarian) value, i.e., regardless of nature’s contributions to human well-being (see “nature for itself” framing [9]). Also, note that such contrasting arguments and approaches are not necessarily mutually exclusive and have been occasionally combined to find a middle ground to achieve broader conservation goals [10–13]. Supporting information C in S1 File. Circumstances under which the prevention/mitigation of a decreasing change is considered as a positive change under EICAT+. In EICAT+, we also consider as positive impacts (i.e., increasing changes) cases in which an alien species prevents/mitigates decreasing changes, e.g., when the performance of a native individual, the size of a native population, or the occupancy of a native species would have decreased, or decreased to a greater extent, if the alien species had not been introduced. Although some of these positive impacts can be inferred, the prevention of a decreasing change should be assessed under EICAT+ only when there is convincing evidence that a certain biodiversity attribute (e.g., population size) would have decreased, or decreased to a greater extent, in the absence of the alien species. In the case of extinction prevention, for instance, it must be clear that (i) the population was locally heading toward extinction before the introduction of the alien; and (ii) the alien taxon prevented, through a specific impact mechanism, an extinction that would have occurred in its absence [41,42] (Fig 2b). Other cases where an alien species may prevent or mitigate decreasing changes are, for instance, those in which the abundance (i.e., a proxy for population size) of a native species declined in the uninvaded (i.e., control) plots but not, or to a lesser extent, in the plots invaded by the alien. Note that positive impacts associated with the prevention/mitigation of a decreasing change will generally be more difficult to study and identify than those associated with actual increasing changes, as the former require extensive data regarding the temporal trend of individual performance, population size, or area of occupancy. Supporting information D in S1 File. EICAT+ mechanisms and submechanisms by which an alien taxon can cause positive impacts on native biodiversity attributes and examples of positive impacts sourced from the literature and assessed under EICAT+ (ML+ = Minimal positive impact, MN+ = Minor positive impact, MO+ = Moderate positive impact, MR+ = Major positive impact, MV+ = Massive positive impact). Rationales behind the formulation of the mechanisms and submechanisms can be found in the main text and in Supporting information G, H, and J. Supporting information E in S1 File. Table reporting examples sourced from the literature and classified as information that cannot be classified under EICAT+, but that contain information about mechanisms and might set the stage for future studies. Although these studies described the existence of mechanisms by which alien taxa may cause positive impacts on native taxa, such literature is considered as nonrelevant, as it did not measure, or provide information on, biodiversity attributes used in EICAT+ (e.g., performance of individuals or population size). Rationales behind the formulation of the mechanisms and submechanisms can be found in the main text and in Supporting information G, H, and J. Supporting information F in S1 File. How to attribute a confidence score in EICAT+. Supporting information G in S1 File. Additional information around the rationale behind the formulation of the EICAT+ mechanisms and submechanisms. Supporting information H in S1 File. Additional information about how alien species can cause positive impacts on native biodiversity through overcompensation. Supporting information J in S1 File. Additional information about how alien species can cause positive impacts on native biodiversity through hybridization. Supporting information K in S1 File. References used in the Supporting information.Peer reviewe

    Impacts of climate change on marine species invasions in northern hemisphere high-latitude ecosystems

    No full text
    High-latitude marine ecosystems have experienced fewer species invasions than temperate marine ecosystems, a discrepancy that may be attributed to barriers such as low propagule pressure, extreme and seasonal abiotic conditions, and biotic resistance of relatively intact communities. Each of these barriers is being affected by climate change and increasing human activity in high-latitude (&gt;55º N) areas. We reviewed the evidence for each of these barriers limiting species invasion in high-latitude areas in the northern hemisphere. Based on records from government documents of high‐latitude countries, non-native species appear to be increasing in number (in Denmark and the United States) although there remains a paucity of data on invasive species establishment for high-latitude regions. Future study is needed to identify the drivers and impacts of invasions at high latitudes so that managers looking to prevent invasions can focus their efforts on bolstering barriers to invasion in these unique ecosystems.</p

    Field site and experimental design.

    No full text
    <p>(a) Location of field site in Sitka, Alaska, USA (map redrawn from the USGS TNM 2.0 viewer [public domain]). (b) Tide pools (n = 20) were randomly assigned to treatment: control (open circle), +Temp (open triangle), +CO<sub>2</sub> (closed circle), and both (closed triangle). (c) Representative tide pool. The submerged OtterBox® contained a warmer, and the OtterBox® outside the pool contained a yeast solution that generated CO<sub>2</sub> which bubbled into the pool.</p

    Percentage change in animal, macroalgal, and total species richness in response to experimental treatments.

    No full text
    <p>Whereas there was a tendency toward declines in species richness in +CO<sub>2</sub> treatments, species richness did not respond significantly to our manipulations (p > 0.10 in all cases). Values are least-squares means (± SE) after accounting for tide pool surface area to volume ratio.</p
    corecore