14 research outputs found
On the Study of Wireless Signal Noise for Designing Network Infrastructure of Knowledge Management Systems
Copyright © 2015 IEEEKnowledge and information management systems are usually supported by wireless networks that strongly rely on reliable received signal strength. The interruption and outage of such system may lead to significant performance disruption. In order to deal with one of the major contributors: noise, this paper investigates the fundamentals of wireless signals and proposes a method to identify and model the noise components quantitatively. We investigate the theoretical method and empirically study two wireless system configurations - one with omnidirectional antennas and one with directional antennas. Results based on real-world experiments confirm the existence and exact contributions of coloured noise components. Based on the preliminary results of this study, future information management systems can be designed with enhanced network support to cope with the variation of signals for improved performance.This paper is sponsored by the Research Councils UK Digital Economy Theme Sustainable Society Network+ and Royal Society-NSFC Grant No. IE131036, and partially supported by DHI Scotland through the Smartcough/Macmasters project
Utilización del triticale hexaploide. I. Molienda experimental
Hoy se sabe que entre un cuarto y un tercio de las especies vegetales se han formado por anfiploidia natural (1). Las especies de Triíicale son anfiploides sintéticos, formados por duplicación del número de cromosomas de los híbridos estériles que resultan al cruzar una especie del género Triticum y el centeno (Sécale cereale). La literatura referente a estas especies sintéticas ha sido revisada recientemente por Briggle (2). El primer Triíicale fue obtenido por Rimpau en 1891, a partir de un cruzamiento de trigo hexaploide por centeno. En 1934, Müntzing (3) inició un programa intensivo para el desarrollo de líneas de Triticale octaploide, con fines prácticos. En 1950, Sánchez-Monge inició un programa similar para la obtención de Triticale de 42 cromosomas y avanzó la hipótesis de que este nivel de ploidía debería ser más próximo al óptimo que el octaploide (4-5). En 1954 se inició el programa canadiense para la obtención de triticales de alto rendimiento (6)
Towards Optimal Power Splitting in Simultaneous Power and Information Transmission
This is the author accepted manuscript. the final version is available from IEEE via the DOI in this recordData availability: All code is available under requestSimultaneous wireless information and power transfer (SWIPT) offers novel designs that could enhance the sustainability and resilience of communication systems. Due to the very limited receiving power from radio frequency (RF) signals, optimal splitting strategies play an essential role for many SWIPT systems. This paper investigates optimal power splitting from the outage perspective by formulating the power, information and joint outage performance using a Markov chain, and studying the boundary conditions for achieving an energy-neutral state. Our results show the intrinsic trade-off between power and information outage and propose a novel polynomial method to obtain optimal power splitting. A number of experiments confirm the performance of this method.Royal SocietyRoyal Society of Edinburgh-NSFCHuawei ProjectEuropean Union FP
Systematic infrared image quality improvement using deep learning based techniques
This is the final version. Available from SPIE via the DOI in this recordInfrared thermography (IRT, or thermal video) uses thermographic cameras to detect and record radiation in the longwavelength infrared range of the electromagnetic spectrum. It allows sensing environments beyond the visual perception limitations, and thus has been widely used in many civilian and military applications. Even though current thermal cameras are able to provide high resolution and bit-depth images, there are significant challenges to be addressed in specific applications such as poor contrast, low target signature resolution, etc. This paper addresses quality improvement in IRT images for object recognition. A systematic approach based on image bias correction and deep learning is proposed to increase target signature resolution and optimise the baseline quality of inputs for object recognition. Our main objective is to maximise the useful information on the object to be detected even when the number of pixels on target is adversely small. The experimental results show that our approach can significantly improve target resolution and thus helps making object recognition more efficient in automatic target detection/recognition systems (ATD/R).Centre for Excellence for Sensor and Imaging System (CENSIS)Scottish Funding CouncilDigital Health and Care Institute (DHI)Royal Society of EdinburghNational Science Foundation of Chin
Compressed UAV sensing for flood monitoring by solving the continuous travelling salesman problem over hyperspectral maps
This is the final version. Available from SPIE via the DOI in this record.Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2018, 10 - 13 September 2018, Berlin, GermanyUnmanned Aerial Vehicles (UAVs) have shown great capability for disaster management due to their fast speed,
automated deployment and low maintenance requirements. In recent years, disasters such as flooding are having
increasingly damaging societal and environmental effects. To reduce their impact, real-time and reliable flood
monitoring and prevention strategies are required. The limited battery life of small lightweight UAVs imposes
efficient strategies to subsample the sensing field. This paper proposes a novel solution to maximise the number of
inspected flooded cells while keeping the travelled distance bounded. Our proposal solves the so-called continuous
Travelling Salesman Problem (TSP), where the costs of travelling from one cell to another depend not only on
the distance, but also on the presence of water. To determine the optimal path between checkpoints, we employ
the fast sweeping algorithm using a cost function defined from hyperspectral satellite maps identifying flooded
regions. Preliminary results using MODIS flood maps show that our UAV planning strategy achieves a covered
flooded surface approximately 4 times greater for the same travelled distance when compared to the conventional
TSP solution. These results show new insights on the use of hyperspectral imagery acquired from UAVs to
monitor water resourcesThis work was funded by the Royal Society of Edinburgh and National Science Foundation of China within the
international project “Flood Detection and Monitoring using Hyperspectral Remote Sensing from Unmanned
Aerial Vehicles” (project NNS/INT 15-16 Casaseca)
Interpretabilidad de Redes Convolucionales para el Análisis de Episodios de Tos en Enfermedades Respiratorias
Objetivo: Estudiar la viabilidad de utilizar metodologías de
interpretabilidad de redes neuronales convoluciones para
al análisis de patrones de tos en la enfermedad respiratoria.
Materiales: Se estudió un grupo de 20 pacientes adultos
afectos de enfermedad respiratoria que presentaban la tos
como síntoma persistente. Los pacientes se monitorizaron
durante 24 horas utilizando una grabadora conectada a un
micrófono de solapa. Métodos: La señal de audio se transformo al dominio de la frecuencia obteniéndose espectrogramas de 1 segundo de duración. Dichos espectrogramas se procesaron mediante una red neuronal convolucional para
identificar los eventos de tos. Los mapas de oclusión que
reflejaban las regiones de los espectrogramas que contribuyen
activamente a la detección de la tos se analizaron cuantitativamente para identificar diferencias entre grupos de
pacientes Resultados: Se observaron diferencias significativas entre el grupo de pacientes con Enfermedad Pulmonar
Obstructiva Crónica (EPOC) y grupos que comprendían
otras enfermedades. Conclusiones: Los métodos de análisis
de interpretabilidad de redes neuronales permiten explicar
diferencias asociadas a la tos entre pacientes crónicos con EPOC y pacientes con otras patologías, tanto crónicas como no crónicas.Este trabajo es parte del proyecto TED2021-131536B-
I00, financiado por MCIN/AEI/10.13039/501100011033
y por la Unión Europea “NextGenerationEU”/PRTR
Interpretabilidad de Redes Convolucionales para el Análisis de Episodios de Tos en Enfermedades Respiratorias
Objetivo: Estudiar la viabilidad de utilizar metodologías de
interpretabilidad de redes neuronales convoluciones para
al análisis de patrones de tos en la enfermedad respiratoria.
Materiales: Se estudió un grupo de 20 pacientes adultos
afectos de enfermedad respiratoria que presentaban la tos
como síntoma persistente. Los pacientes se monitorizaron
durante 24 horas utilizando una grabadora conectada a un
micrófono de solapa. Métodos: La señal de audio se transformo al dominio de la frecuencia obteniéndose espectrogramas de 1 segundo de duración. Dichos espectrogramas se procesaron mediante una red neuronal convolucional para
identificar los eventos de tos. Los mapas de oclusión que
reflejaban las regiones de los espectrogramas que contribuyen
activamente a la detección de la tos se analizaron cuantitativamente para identificar diferencias entre grupos de
pacientes Resultados: Se observaron diferencias significativas entre el grupo de pacientes con Enfermedad Pulmonar
Obstructiva Crónica (EPOC) y grupos que comprendían
otras enfermedades. Conclusiones: Los métodos de análisis
de interpretabilidad de redes neuronales permiten explicar
diferencias asociadas a la tos entre pacientes crónicos con EPOC y pacientes con otras patologías, tanto crónicas como no crónicas.Este trabajo es parte del proyecto TED2021-131536B-
I00, financiado por MCIN/AEI/10.13039/501100011033
y por la Unión Europea “NextGenerationEU”/PRTR
Symbolic Dynamic Analysis of Relations Between Cardiac and Breathing Cycles in Patients on Weaning Trials
Traditional time-domain techniques of data analysis are often not sufficient to characterize the complex dynamics of the cardiorespiratory interdependencies during the weaning trials. In this paper, the interactions between the heart rate (HR) and the breathing rate (BR) were studied using joint symbolic dynamic analysis. A total of 133 patients on weaning trials from mechanical ventilation were analyzed: 94 patients with successful weaning (group S) and 39 patients that failed to maintain spontaneous breathing (group F). The word distribution matrix enabled a coarse-grained quantitative assessment of short-term nonlinear analysis of the cardiorespiratory interactions. The histogram of the occurrence probability of the cardiorespiratory words presented a higher homogeneity in group F than in group S, measured with a higher number of forbidden words in group S as well as a higher number of words whose probability of occurrence is higher than a probability threshold in group S. The discriminant analysis revealed the best results when applying symbolic dynamic variables. Therefore, we hypothesize that joint symbolic dynamic analysis provides enhanced information about different interactions between HR and BR, when comparing patients with successful weaning and patients that failed to maintain spontaneous breathing in the weaning procedure
A reconfigurable supporting connected health environment for people with chronic diseases
Digital healthcare is becoming increasingly important as the ageing population and the number of people diagnosed with chronic diseases is increasing. The face of healthcare delivery has changed radically and at its core is a digital and customer revolution. Connected health is the convergence of medical devices, security devices, and communication technologies. It enables patients to be monitored and treated remotely from their home or primary care facility rather than attend outpatient clinics or be admitted to hospital. This chapter discusses the recent advances in connected health technologies and applications. The authors investigate a reconfigurable supporting connected health solution for people with chronic diseases using reconfigurable hardware and intelligent data interpretation and analysis. In addition, a thorough review of the existing information and communications technologies and challenges in the area of connected health including embedded medical devices, sensors, social networking, knowledge management, data fusion, and cloud computing is presented in this chapter. Finally, future directions and ongoing research in the area of connected health are presented. - 2018 by IGI Global. All rights reserved.Scopu