4,538 research outputs found

    Complete structure of Z_n Yukawa couplings

    Full text link
    We give the complete twisted Yukawa couplings for all the Z_n orbifold constructions in the most general case, i.e. when orbifold deformations are considered. This includes a certain number of tasks. Namely, determination of the allowed couplings, calculation of the explicit dependence of the Yukawa couplings values on the moduli expectation values (i.e. the parameters determining the size and shape of the compactified space), etc. The final expressions are completely explicit, which allows a counting of the DIFFERENT Yukawa couplings for each orbifold (with and without deformations). This knowledge is crucial to determine the phenomenological viability of the different schemes, since it is directly related to the fermion mass hierarchy. Other facts concerning the phenomenological profile of Z_n orbifolds are also discussed, e.g. the existence of non--diagonal entries in the fermion mass matrices, which is related to a non--trivial structure of the Kobayashi--Maskawa matrix. Finally some theoretical results are given, e.g. the no--participation of (1,2) moduli in twisted Yukawa couplings. Likewise, (1,1) moduli associated with fixed tori which are involved in the Yukawa coupling, do not affect the value of the coupling.Comment: 60 page

    Fitting the Quark and Lepton Masses in String Theories

    Full text link
    The capability of string theories to reproduce at low energy the observed pattern of quark and lepton masses and mixing angles is examined, focusing the attention on orbifold constructions, where the magnitude of Yukawa couplings depends on the values of the deformation parameters which describe the size and shape of the compactified space. A systematic exploration shows that for Z3Z_3, Z4Z_4, Z6Z_6--I and possibly Z7Z_7 orbifolds a correct fit of the physical fermion masses is feasible. In this way the experimental masses, which are low--energy quantities, select a particular size and shape of the compactified space, which turns out to be very reasonable (in particular the modulus TT defining the former is T=O(1)T=O(1)). The rest of the ZNZ_N orbifolds are rather hopeless and should be discarded on the assumption of a minimal SU(3)×SU(2)×U(1)YSU(3)\times SU(2)\times U(1)_Y scenario. On the other hand, due to stringy selection rules, there is no possibility of fitting the Kobayashi--Maskawa parameters at the renormalizable level, although it is remarked that this job might well be done by non--renormalizable couplings.Comment: 19 page

    Tools for Quality Testing of Batches of Artifacts: The Cryogenic Thermometers for the LHC

    Get PDF
    In the processing of data series, such as in the case of the resistance R vs. temperature T calibrations of the thermometers (several thousands) necessary for the LHC new accelerator at CERN, it is necessary to use automatic methods for determining the quality of the acquired data and the degree of uniformity of the thermometer characteristics, that are of the semiconducting type. In addition, it must be determined if the calibration uncertainties comply with the specifications in the wide temperature range 1,6 - 300 K. Advantage has been taken of the fact that these thermometers represent a population with limited variability, to apply a Least Squares Method with Fixed Effect. This allows to fit the data of all the thermometers together, by taking into account the individuality of each thermometer in the model as a deviation from one of them taken as reference Ri = f(Ti) + bk0 + bk1 g(Tki) + bk1g(Tki)2 + ... where f(Ti) is the model valid for all i data and all k thermometers, while the subsequent part is the "fixed effect" model for the k-th thermometer, where g(T) is a suitable function of T. This method is shown in the paper applied to different stages of the data processing. First, for efficient compensation for the thermal drift occurring during acquisition, robust against the occurrence of outliers. Second, for detection of clusters of thermometers with inherently different characteristics. Finally, for optimisation of the calibration-point distribution

    Finite Difference Synthetic Acoustic Logs

    Get PDF
    Synthetic seismograms of elastic wave propagation in a fluid-filled borehole were generated using both the finite difference technique and the discrete wavenumber summation technique. The latter is known to be accurate for both body and surface (guided) waves. The finite difference grid has absorbing boundaries on two sides and axes of symmetry on the remaining two sides. A grid size no less than 10 points per wavelength was used. The far absorbing boundary was located at a distance of five to 10 radii from the borehole. Two types of solid-liquid interfaces were investigated: 1) a velocity gradient using the heterogeneous formulation, and 2) a sharp boundary using a second order Taylor expansion of the displacements. The results from the finite difference modeling were compared with the synthetic seismograms generated by the discrete wavenumber summation method. No comparison the heterogeneous formulation and the discrete wavenumber method has been made. The second order approximation to the solid-liquid interface produced seismograms that compared 'well with the discrete wavenumber seismograms. A detailed comparison between the seismograms generated by the two methods showed that the body waves (refracted P and S waves) are identical. while the guided waves showed a slight difference in both phase and amplitude. These differences are believed to be due to the approximations introduced in the fluid-solid interface, the absorbing boundary at the edge of the grid, and the grid and time step sizes involved. Owing. to the fact that they are interface waves, the guided waves, especially the higher modes, are much more sensitive to the above mentioned approximations

    Analysis of optimal control problems of semilinear elliptic equations by BV-functions

    Get PDF
    Optimal control problems for semilinear elliptic equations with control costs in the space of bounded variations are analysed. BV-based optimal controls favor piecewise constant, and hence ’simple’ controls, with few jumps. Existence of optimal controls, necessary and sufficient optimality conditions of first and second order are analysed. Special attention is paid on the effect of the choice of the vector norm in the definition of the BV-seminorm for the optimal primal and adjoined variables.The first author was partially supported by Spanish Ministerio de Economía, Industria y Competitividad under research projects MTM2014-57531-P and MTM2017-83185-P. The second was partially supported by the ERC advanced grant 668998 (OCLOC) under the EUs H2020 research program

    Volcanic Stratigraphy of Hannah Point, Livingston Island, South Shetland Islands, Antarctica

    Get PDF
    The Upper Cretaceous volcanic succession of Hannah Point is the best exposure of the Antarctic Peninsula Volcanic Group on Livingston Island. The aim of the present paper is to contribute to the characterisation of the stratigraphy and petrography of this little studied succession, and briefly discuss some aspects of the eruptive style of its volcanism. The succession is about 470 m thick and is here subdivided into five lithostratigraphic units (A to E from base to top). Unit A, approximately 120 m thick, is mainly composed of polymict clast-supported volcaniclastic breccias and also includes a dacitic lava laye r. Interstratified in the breccias of this unit, there is a thin laminated devitrified layer which shows some degree of welding. Unit B, approximately 70 m thick, is almost entirely composed of volcaniclastic breccias, and includes a volcaniclastic conglomerate layer. Breccias in this unit can be subdivided into two distinct types; polymict clast-supported breccias, and monomict matrix-supported breccias rich in juvenile components and displaying incipient welding. Unit C, about 65 m thick, is mainly composed of basaltic lavas, which are interlayered with minor volcaniclastic breccias. Unit D, approximately 65 m thick, is lithologically similar to unit B, composed of an alternation of polymict clasts upported breccias and matrix-supported breccias, and includes a volcaniclastic conglomerate layer. Unit E, about 150 m thick, is mainly formed of thick andesitic lava layers. Minor basaltic dykes and a few normal faults cut the succession, and the contact between units A and B can be interpreted both as an unconformity or a fault. The matrix-supported breccias included in the succession of Hannah Point have high contents of juvenile components and incipient welding, which suggest that part of the succession is the result of pyroclastic fragmentation and emplacement from pyroclastic flows. In contrast, the polymict clast-supported breccias suggest reworking of previous deposits and deposition from cool mass flows. The lavas indicate effusive volcanic eruptions, and the absence of features indicative of subaqueous volcanism suggests that at least these portions of the succession were emplaced in a subaerial environment

    {HandFlow}: {Q}uantifying View-Dependent {3D} Ambiguity in Two-Hand Reconstruction with Normalizing Flow

    Get PDF
    Reconstructing two-hand interactions from a single image is a challengingproblem due to ambiguities that stem from projective geometry and heavyocclusions. Existing methods are designed to estimate only a single pose,despite the fact that there exist other valid reconstructions that fit theimage evidence equally well. In this paper we propose to address this issue byexplicitly modeling the distribution of plausible reconstructions in aconditional normalizing flow framework. This allows us to directly supervisethe posterior distribution through a novel determinant magnituderegularization, which is key to varied 3D hand pose samples that project wellinto the input image. We also demonstrate that metrics commonly used to assessreconstruction quality are insufficient to evaluate pose predictions under suchsevere ambiguity. To address this, we release the first dataset with multipleplausible annotations per image called MultiHands. The additional annotationsenable us to evaluate the estimated distribution using the maximum meandiscrepancy metric. Through this, we demonstrate the quality of ourprobabilistic reconstruction and show that explicit ambiguity modeling isbetter-suited for this challenging problem.<br

    Higgs-Boson Mass Limits and Precise Measurements beyond the Standard Model

    Full text link
    The triviality and vacuum stability bounds on the Higgs-boson mass (\mh) were revisited in presence of weakly-coupled new interactions parameterized in a model-independent way by effective operators of dimension 6. The constraints from precision tests of the Standard Model were taken into account. It was shown that for the scale of new physics in the region \Lambda \simeq 2 \div 50 \tev the Standard Model triviality upper bound remains unmodified whereas it is natural to expect that the lower bound derived from the requirement of vacuum stability is substantially modified depending on the scale \La and strength of coefficients of effective operators. A natural generalization of the standard triviality condition leads also to a substantial reduction of the allowed region in the (\Lambda,\mh) space.Comment: 18 pages 3 eps figures. The discussion in the appendix was modified slightly and some typographical errors were correcte

    Real-time Hand Tracking under Occlusion from an Egocentric RGB-D Sensor

    No full text
    We present an approach for real-time, robust and accurate hand pose estimation from moving egocentric RGB-D cameras in cluttered real environments. Existing methods typically fail for hand-object interactions in cluttered scenes imaged from egocentric viewpoints, common for virtual or augmented reality applications. Our approach uses two subsequently applied Convolutional Neural Networks (CNNs) to localize the hand and regress 3D joint locations. Hand localization is achieved by using a CNN to estimate the 2D position of the hand center in the input, even in the presence of clutter and occlusions. The localized hand position, together with the corresponding input depth value, is used to generate a normalized cropped image that is fed into a second CNN to regress relative 3D hand joint locations in real time. For added accuracy, robustness and temporal stability, we refine the pose estimates using a kinematic pose tracking energy. To train the CNNs, we introduce a new photorealistic dataset that uses a merged reality approach to capture and synthesize large amounts of annotated data of natural hand interaction in cluttered scenes. Through quantitative and qualitative evaluation, we show that our method is robust to self-occlusion and occlusions by objects, particularly in moving egocentric perspectives
    • 

    corecore