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In the processing of data series, such as in the case of the resistance R vs. temperature T
calibrations of the thermometers (several thousands) necessary for the LHC new accelerator at
CERN, it is necessary to use automatic methods for determining the quality of the acquired
data and the degree of uniformity of the thermometer characteristics, that are of the
semiconducting type. In addition, it must be determined if the calibration uncertainties
comply with the specifications in the wide temperature range 1,6 – 300 K.
Advantage has been taken of the fact that these thermometers represent a population with
limited variability, to apply a Least Squares Method with Fixed Effect. This allows to fit the
data of all the thermometers together, by taking into account the individuality of each
thermometer in the model as a deviation from one of them taken as reference:

Ri = f(Ti) + bk0 + bk1 g(Tki) + bk1g(Tki)
2 + ...

where f(Ti) is the model valid for all i data and all k thermometers, while the subsequent part
is the “fixed effect” model for the k-th thermometer, where g(T) is a suitable function of T.
This method is shown in the paper applied to different stages of the data processing. First, for
efficient compensation for the thermal drift occurring during acquisition, robust against the
occurrence of outliers. Second, for detection of clusters of thermometers with inherently
different characteristics. Finally, for optimisation of the calibration-point distribution.

1 Introduction

At the European Organization for Nuclear Research (CERN)  a new accelerator  of par- 
ticles will be constructed, called Large Hadron Collider (LHC). For the construction of
the LHC,  a large  amount  of  cryogenic thermometers has to be calibrated with auto- 
matic equipment and data reduction procedures in the temperature range 1,6K–300K.
The most  important  feature of the data set concerning the semiconducting-type
thermometers,  for which the specifications are stricter,  is the limited uniformity of
the dependent variable,  i.e., the thermometer electrical resistance.  We applied to this
special kind of data a method,  the Least Squares Method with Fixed Effect,  that
takes into account both  the theoretical similarity of the thermometers  and their
individuality. [1,2]  First, we studied an efficient  compensation for the thermal drift
occurring during acquisition,  robust  against the occurrence of outliers. Second, we
used the method for detection  of clusters  of thermometers with inherently different



characteristics. Finally, we used it for studying the optimisation of the calibration-
point distribution.

2 The Mathematical Model: LSM with Fixed Effect (LMSFE)

The theoretical similarity of the thermometers imposed the choice of a model that
assumes the same physical model for all the data series. However, a systematic bias
between series must also be included. In the case of an additive bias characterizing
each data series, the general description of the model is:

  
y Common(x Specific(xk i k i k i, ) )= +, , , for k = 1, …, S and i =1, …, nk where S is the

total number of series and nk is the number of measurements of the k-th series,

resulting in 
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that there exists a polynomial basis for the function   Common  and that the specific
effect is a linear one. Then the following model function holds:
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The     m S+ +2 1 parameters of the previous equation are not independent. Hence the
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where the f-th series is taken as reference.
Now the intercept 

    
δ = +a t f0  of the reference series also represents the mean value

of the f-th series, while each new bias parameter 
  
τ k k ft t= −  represents an effect

relative to the reference. Similar considerations can be applied to the first derivative
of the above equation for x = 0, by defining 

  
γ = +a u f1  and 

  
ν k k fu u= − . Now,

considering the M-dimensional vector α =(
      δ γ τ τ ν ν, , , , , , , , ,a am S S2 K K K2 2 ) and

assuming f = 1, the regression matrix becomes of the form 
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As usual, in this type of modeling procedures, a check on the scale of the variables
is often needed In fact, in our studies we used, in general, a logarithmic



transformation of the initial variables. Nevertheless, in this case the matrix X could
be ill-conditioned and a renormalisation should be performed.

3 Applications and Results

3.1 Compensation of thermal drift

Thermal drift with time in the calibration equipment is unavoidable, and there is
advantage in using a method that allows for less thermal stabilisation, because it
allows a net gain in the calibration time, provided that an internal check is possible
for the effect of the thermal gradients.
In general, for drift compensation a reference calibrated thermometer is measured
many times and its fitted data represent the drift function to be subtracted from the
data. The LSMFE avoids the use of the reference thermometer, by fitting, on the
contrary, the data of all the uncalibrated thermometers: few data points for each
(typically 4-6), but on a large number of thermometers (15–50) allows an accurate
evaluation of the drift function with a better statistics. The temperature span of the
drift being limited, the thermometer individuality is limited too, and consequently a
linear function   Specific  is generally sufficient.

Fig.1 – Reduction of the thermal drift with the LSMFE for 18 thermometers. Residuals of the overall
fitting for very low thermal drift. Above ≈ 30 K the total drift increases up to tenths of a kelvin.
However, the _ values are always comparable with the ones estimated by using a reference thermometer,
but they represent the actual uncertainty of the whole set of data.

The presence of outlying data required a preliminary screening procedure.
These outliers can be due either to pulse-noise (for their elimination during data
acquisition see [3]) or to outlying characteristics of a thermometer (either intrinsic
or due to its mounting on the calibration apparatus). The outlier rejection has been
simply obtained by applying a threshold criterium, not critical for the drift-
evaluation purpose. The quality of the resulting data series was still found to be
quite variable, as shown in Fig.1 for low-drift cases, reflecting the run-to-run
variability of the thermal conditions in the calibration apparatus, though generally
matching the tolerated uncertainty (see specs in Fig.3). Extending the LSMFE to
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larger and larger drift spans by adding data taken with higher drift rates, the
dispersion of the data starts increasing in the high-drift region, detecting a new
physical artifact, thermal gradients between thermometers. This can be used as a
criterium for data selection.

3.2 Fitting the R-T Characteristics
The LSMFE was then applied to obtain the R-T characteristics of the whole batch of

thermometers. The polynomial
    

log T R A i log R
i

m i
10 101

0
( ( )) ( ) / ( )= ⋅

=
∑ ( ) was used with i =

4 for the common model and with i up to 2 for the fixed effect.

log10T

Residuals

Fig.2  Clustering of 80 thermometers. Each cluster corresponds to a different set of model coefficients.

As shown in Fig.2, the LSMFE allows to detect groups of thermometers with
characteristics intrinsically, though slightly, different. Especially with
semiconducting thermometers, this could be correlated with fabrication parameters
(position of the sensing elements on the chip) or with calibration parameters
(mounting on the comparison block, overheating of the sensing element due to the
measuring current). The latter has already been proved, while for the first a check
will be done with the manufacturer.

For each group of homogeneous thermometers, the LSMFE has been applied a
third time to check for the effect of the experimental design on the overall
uncertainty. Fig.3 shows the effect of the omission of all the experimental points in
the temperature interval 77-300 K: the specs limits are not matched anymore.



Fig.3. Deviation of the fitting when using a dataset with missing points between 77 K and 300 K. The
specs limits are also shown.

4 Conclusions

We have shown that the LSMFE can efficiently be used to compute thermal drift
without resorting to a reference thermometer and being robust against mildly
outlying data. We have also shown that the method is able to detect different classes
of thermometers and to study the effect of experimental design on the whole batch
of calibrations. A specific software running under MATLAB® is available for the
purpose.

Studies are planned to continue on the minimisation of the calibration time, on
the optimisation of the experimental design, also by using more stable classes of
approximating functions (e.g., splines), and on the statistical evaluation of the
results by using non-parametric methods (e.g., bootstrap).
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