3 research outputs found

    Structure-Based Design of Potent Tumor-Associated Antigens: Modulation of Peptide Presentation by Single-Atom O/S or O/Se Substitutions at the Glycosidic Linkage.

    Get PDF
    GalNAc-glycopeptides derived from mucin MUC1 are an important class of tumor-associated antigens. α- O-glycosylation forces the peptide to adopt an extended conformation in solution, which is far from the structure observed in complexes with a model anti-MUC1 antibody. Herein, we propose a new strategy for designing potent antigen mimics based on modulating peptide/carbohydrate interactions by means of O → S/Se replacement at the glycosidic linkage. These minimal chemical modifications bring about two key structural changes to the glycopeptide. They increase the carbohydrate-peptide distance and change the orientation and dynamics of the glycosidic linkage. As a result, the peptide acquires a preorganized and optimal structure suited for antibody binding. Accordingly, these new glycopeptides display improved binding toward a representative anti-MUC1 antibody relative to the native antigens. To prove the potential of these glycopeptides as tumor-associated MUC1 antigen mimics, the derivative bearing the S-glycosidic linkage was conjugated to gold nanoparticles and tested as an immunogenic formulation in mice without any adjuvant, which resulted in a significant humoral immune response. Importantly, the mice antisera recognize cancer cells in biopsies of breast cancer patients with high selectivity. This finding demonstrates that the antibodies elicited against the mimetic antigen indeed recognize the naturally occurring antigen in its physiological context. Clinically, the exploitation of tumor-associated antigen mimics may contribute to the development of cancer vaccines and to the improvement of cancer diagnosis based on anti-MUC1 antibodies. The methodology presented here is of general interest for applications because it may be extended to modulate the affinity of biologically relevant glycopeptides toward their receptors

    Immediate vs. deferred switching from a boosted protease inhibitor (PI/r) based regimen to a Dolutegravir (DTG) based regimen in virologically suppressed patients with high cardiovascular risk or Age ≥50 years: final 96 weeks results of NEAT 022 study

    Get PDF
    Background Both immediate and deferred switching from a ritonavir-boosted protease inhibitor (PI/r)–based regimen to a dolutegravir (DTG)–based regimen may improve lipid profile. Methods European Network for AIDS Treatment 022 Study (NEAT022) is a European, open-label, randomized trial. Human immunodeficiency virus (HIV)–infected adults aged ≥50 years or with a Framingham score ≥10% were eligible if HIV RNA was <50 copies/mL. Patients were randomized to switch from PI/r to DTG immediately (DTG-I) or to deferred switch at week 48 (DTG-D). Week 96 endpoints were proportion of patients with HIV RNA <50 copies/mL, percentage change of lipid fractions, and adverse events (AEs). Results Four hundred fifteen patients were randomized: 205 to DTG-I and 210 DTG-D. The primary objective of noninferiority at week 48 was met. At week 96, treatment success rate was 92.2% in the DTG-I arm and 87% in the DTG-D arm (difference, 5.2% [95% confidence interval, –.6% to 11%]). There were 5 virological failures in the DTG-I arm and 5 (1 while on PI/r and 4 after switching to DTG) in the DTG-D arm without selection of resistance mutations. There was no significant difference in terms of grade 3 or 4 AEs or treatment-modifying AEs. Total cholesterol and other lipid fractions (except high-density lipoprotein) significantly (P < .001) improved both after immediate and deferred switching to DTG overall and regardless of baseline PI/r strata. Conclusions Both immediate and deferred switching from a PI/r to a DTG regimen in virologically suppressed HIV-infected patients ≥50 years old or with a Framingham score ≥10% was highly efficacious and well tolerated, and improved the lipid profile
    corecore