24 research outputs found

    Implementation of the COVID-19 vulnerability index across an international network of health care data sets:Collaborative external validation study

    Get PDF
    Background: SARS-CoV-2 is straining health care systems globally. The burden on hospitals during the pandemic could be reduced by implementing prediction models that can discriminate patients who require hospitalization from those who do not. The COVID-19 vulnerability (C-19) index, a model that predicts which patients will be admitted to hospital for treatment of pneumonia or pneumonia proxies, has been developed and proposed as a valuable tool for decision-making during the pandemic. However, the model is at high risk of bias according to the "prediction model risk of bias assessment" criteria, and it has not been externally validated.Objective: The aim of this study was to externally validate the C-19 index across a range of health care settings to determine how well it broadly predicts hospitalization due to pneumonia in COVID-19 cases.Methods: We followed the Observational Health Data Sciences and Informatics (OHDSI) framework for external validation to assess the reliability of the C-19 index. We evaluated the model on two different target populations, 41,381 patients who presented with SARS-CoV-2 at an outpatient or emergency department visit and 9,429,285 patients who presented with influenza or related symptoms during an outpatient or emergency department visit, to predict their risk of hospitalization with pneumonia during the following 0-30 days. In total, we validated the model across a network of 14 databases spanning the United States, Europe, Australia, and Asia.Results: The internal validation performance of the C-19 index had a C statistic of 0.73, and the calibration was not reported by the authors. When we externally validated it by transporting it to SARS-CoV-2 data, the model obtained C statistics of 0.36, 0.53 (0.473-0.584) and 0.56 (0.488-0.636) on Spanish, US, and South Korean data sets, respectively. The calibration was poor, with the model underestimating risk. When validated on 12 data sets containing influenza patients across the OHDSI network, the C statistics ranged between 0.40 and 0.68.Conclusions: Our results show that the discriminative performance of the C-19 index model is low for influenza cohorts and even worse among patients with COVID-19 in the United States, Spain, and South Korea. These results suggest that C-19 should not be used to aid decision-making during the COVID-19 pandemic. Our findings highlight the importance of performing external validation across a range of settings, especially when a prediction model is being extrapolated to a different population. In the field of prediction, extensive validation is required to create appropriate trust in a model.</p

    Characteristics and outcomes of 627 044 COVID-19 patients living with and without obesity in the United States, Spain, and the United Kingdom

    Get PDF
    Altres ajuts: This research received partial support from the National Institute for Health Research (NIHR) Oxford Biomedical Research Center (BRC), US National Institutes of Health, US Department of Veterans Affairs, Janssen Research & Development, and IQVIA. The University of Oxford received funding related to this work from the Bill & Melinda Gates Foundation (Investment ID INV016201 and INV-019257). APU has received funding from the Medical Research Council (MRC) [MR/K501256/1, MR/N013468/1] and Fundación Alfonso Martín Escudero (FAME) (APU). VINCI [VA HSR RES 13-457] (SLD, MEM, KEL). JCEL has received funding from the Medical Research Council (MR/K501256/1) and Versus Arthritis (21605). MR is funded by Wereld Kanker Onderzoek Fonds (WKOF), as part of the World Cancer Research Fund International grant program [grant number: 2017/1630]A detailed characterization of patients with COVID-19 living with obesity has not yet been undertaken. We aimed to describe and compare the demographics, medical conditions, and outcomes of COVID-19 patients living with obesity (PLWO) to those of patients living without obesity. We conducted a cohort study based on outpatient/inpatient care and claims data from January to June 2020 from Spain, the UK, and the US. We used six databases standardized to the OMOP common data model. We defined two non-mutually exclusive cohorts of patients diagnosed and/or hospitalized with COVID-19; patients were followed from index date to 30 days or death. We report the frequency of demographics, prior medical conditions, and 30-days outcomes (hospitalization, events, and death) by obesity status. We included 627 044 (Spain: 122 058, UK: 2336, and US: 502 650) diagnosed and 160 013 (Spain: 18 197, US: 141 816) hospitalized patients with COVID-19. The prevalence of obesity was higher among patients hospitalized (39.9%, 95%CI: 39.8−40.0) than among those diagnosed with COVID-19 (33.1%; 95%CI: 33.0−33.2). In both cohorts, PLWO were more often female. Hospitalized PLWO were younger than patients without obesity. Overall, COVID-19 PLWO were more likely to have prior medical conditions, present with cardiovascular and respiratory events during hospitalization, or require intensive services compared to COVID-19 patients without obesity. We show that PLWO differ from patients without obesity in a wide range of medical conditions and present with more severe forms of COVID-19, with higher hospitalization rates and intensive services requirements. These findings can help guiding preventive strategies of COVID-19 infection and complications and generating hypotheses for causal inference studies

    Risk of depression, suicide and psychosis with hydroxychloroquine treatment for rheumatoid arthritis:a multinational network cohort study

    Get PDF
    Objectives: Concern has been raised in the rheumatology community regarding recent regulatory warnings that HCQ used in the coronavirus disease 2019 pandemic could cause acute psychiatric events. We aimed to study whether there is risk of incident depression, suicidal ideation or psychosis associated with HCQ as used for RA.Methods: We performed a new-user cohort study using claims and electronic medical records from 10 sources and 3 countries (Germany, UK and USA). RA patients ≥18 years of age and initiating HCQ were compared with those initiating SSZ (active comparator) and followed up in the short (30 days) and long term (on treatment). Study outcomes included depression, suicide/suicidal ideation and hospitalization for psychosis. Propensity score stratification and calibration using negative control outcomes were used to address confounding. Cox models were fitted to estimate database-specific calibrated hazard ratios (HRs), with estimates pooled where I2 &lt;40%.Results: A total of 918 144 and 290 383 users of HCQ and SSZ, respectively, were included. No consistent risk of psychiatric events was observed with short-term HCQ (compared with SSZ) use, with meta-analytic HRs of 0.96 (95% CI 0.79, 1.16) for depression, 0.94 (95% CI 0.49, 1.77) for suicide/suicidal ideation and 1.03 (95% CI 0.66, 1.60) for psychosis. No consistent long-term risk was seen, with meta-analytic HRs of 0.94 (95% CI 0.71, 1.26) for depression, 0.77 (95% CI 0.56, 1.07) for suicide/suicidal ideation and 0.99 (95% CI 0.72, 1.35) for psychosis.Conclusion: HCQ as used to treat RA does not appear to increase the risk of depression, suicide/suicidal ideation or psychosis compared with SSZ. No effects were seen in the short or long term. Use at a higher dose or for different indications needs further investigation.Trial registration: Registered with EU PAS (reference no. EUPAS34497; http://www.encepp.eu/encepp/viewResource.htm? id=34498). The full study protocol and analysis source code can be found at https://github.com/ohdsi-studies/Covid19EstimationHydroxychloroquine2.</p

    Characteristics and outcomes of over 300,000 patients with COVID-19 and history of cancer in the United States and Spain

    Get PDF
    Background: We described the demographics, cancer subtypes, comorbidities, and outcomes of patients with a history of cancer and coronavirus disease 2019 (COVID-19). Second, we compared patients hospitalized with COVID-19 to patients diagnosed with COVID-19 and patients hospitalized with influenza. Methods: We conducted a cohort study using eight routinely collected health care databases from Spain and the United States, standardized to the Observational Medical Outcome Partnership common data model. Three cohorts of patients with a history of cancer were included: (i) diagnosed with COVID-19, (ii) hospitalized with COVID-19, and (iii) hospitalized with influenza in 2017 to 2018. Patients were followed from index date to 30 days or death. We reported demographics, cancer subtypes, comorbidities, and 30-day outcomes. Results: We included 366,050 and 119,597 patients diagnosed and hospitalized with COVID-19, respectively. Prostate and breast cancers were the most frequent cancers (range: 5%–18% and 1%–14% in the diagnosed cohort, respectively). Hematologic malignancies were also frequent, with non-Hodgkin’s lymphoma being among the five most common cancer subtypes in the diagnosed cohort. Overall, patients were aged above 65 years and had multiple comorbidities. Occurrence of death ranged from 2% to 14% and from 6% to 26% in the diagnosed and hospitalized COVID-19 cohorts, respectively. Patients hospitalized with influenza (n ¼ 67,743) had a similar distribution of cancer subtypes, sex, age, and comorbidities but lower occurrence of adverse events. Conclusions: Patients with a history of cancer and COVID-19 had multiple comorbidities and a high occurrence of COVID-19-related events. Hematologic malignancies were frequent. Impact: This study provides epidemiologic characteristics that can inform clinical care and etiologic studies.</p

    Risk of hydroxychloroquine alone and in combination with azithromycin in the treatment of rheumatoid arthritis: a multinational, retrospective study

    Get PDF
    Background: Hydroxychloroquine, a drug commonly used in the treatment of rheumatoid arthritis, has received much negative publicity for adverse events associated with its authorisation for emergency use to treat patients with COVID-19 pneumonia. We studied the safety of hydroxychloroquine, alone and in combination with azithromycin, to determine the risk associated with its use in routine care in patients with rheumatoid arthritis. Methods: In this multinational, retrospective study, new user cohort studies in patients with rheumatoid arthritis aged 18 years or older and initiating hydroxychloroquine were compared with those initiating sulfasalazine and followed up over 30 days, with 16 severe adverse events studied. Self-controlled case series were done to further establish safety in wider populations, and included all users of hydroxychloroquine regardless of rheumatoid arthritis status or indication. Separately, severe adverse events associated with hydroxychloroquine plus azithromycin (compared with hydroxychloroquine plus amoxicillin) were studied. Data comprised 14 sources of claims data or electronic medical records from Germany, Japan, the Netherlands, Spain, the UK, and the USA. Propensity score stratification and calibration using negative control outcomes were used to address confounding. Cox models were fitted to estimate calibrated hazard ratios (HRs) according to drug use. Estimates were pooled where the I2 value was less than 0·4. Findings: The study included 956 374 users of hydroxychloroquine, 310 350 users of sulfasalazine, 323 122 users of hydroxychloroquine plus azithromycin, and 351 956 users of hydroxychloroquine plus amoxicillin. No excess risk of severe adverse events was identified when 30-day hydroxychloroquine and sulfasalazine use were compared. Self-controlled case series confirmed these findings. However, long-term use of hydroxychloroquine appeared to be associated with increased cardiovascular mortality (calibrated HR 1·65 [95% CI 1·12–2·44]). Addition of azithromycin appeared to be associated with an increased risk of 30-day cardiovascular mortality (calibrated HR 2·19 [95% CI 1·22–3·95]), chest pain or angina (1·15 [1·05–1·26]), and hear

    Lääkevalinnalla on merkitystä tyypin 2 diabeteksessa

    No full text
    Lähtökohdat : Vertailimme empagliflotsiinin ja dipeptidyylipeptidaasi-4:n (DPP-4) estäjien vaikuttavuutta ja terveydenhuollon resurssien käyttöä Suomessa. Työ tehtiin osana EU:n ja Aasian Emprise-tutkimusta (EUPAS27606, NCT03817463). Menetelmät : Ei-interventionaalinen, retrospektiivinen kohorttitutkimus käytti suomalaisia rekisteriaineistoja. Aikuiset, jotka aloittivat tyypin 2 diabetekseensa lääkehoidon empagliflotsiinilla tai DPP-4:n estäjillä 5/2014–12/2018, kaltaistettiin pareiksi ≥ 170 muuttujaan perustuvilla propensiteettipisteillä. Päätetapahtumia ja terveydenhuollon resurssien käyttöä vertailtiin Coxin mallilla ja Poissonin regressiomallilla. Tulokset : 11 801 potilasparia kaltaistettiin. Empagliflotsiinia käyttävillä oli DPP-4:n estäjiin verrattuna pienempi sydämen vajaatoiminnan (HR = 0,54; 95 %:n LV 0,39–0,74), kuoleman (HR = 0,36; 0,27–0,48), sydäninfarktin, aivohalvauksen tai kokonaiskuolleisuuden yhteismuuttujan (HR = 0,53; 0,43–0,66) ja loppuvaiheen munuaistaudin (ESRD) (HR = 0,43; 0,19–0,95) riski. Lisäksi empagliflotsiinipotilailla terveydenhuollon resurssien käyttö oli merkitsevästi vähäisempää. Tulokset olivat samansuuntaisia sydän- ja verisuonitautia sairastavilla ja muilla diabetespotilailla. Päätelmät : Empagliflotsiinia käyttäneillä oli pienempi vakavien päätetapahtumien riski sekä vähemmän terveydenhuollon resurssien käyttöä DPP-4:n estäjiin verrattuna.Peer reviewe

    Bias, Precision and Timeliness of Historical (Background) Rate Comparison Methods for Vaccine Safety Monitoring: An Empirical Multi-Database Analysis

    No full text
    Using real-world data and past vaccination data, we conducted a large-scale experiment to quantify bias, precision and timeliness of different study designs to estimate historical background (expected) compared to post-vaccination (observed) rates of safety events for several vaccines. We used negative (not causally related) and positive control outcomes. The latter were synthetically generated true safety signals with incident rate ratios ranging from 1.5 to 4. Observed vs. expected analysis using within-database historical background rates is a sensitive but unspecific method for the identification of potential vaccine safety signals. Despite good discrimination, most analyses showed a tendency to overestimate risks, with 20%-100% type 1 error, but low (0% to 20%) type 2 error in the large databases included in our study. Efforts to improve the comparability of background and post-vaccine rates, including age-sex adjustment and anchoring background rates around a visit, reduced type 1 error and improved precision but residual systematic error persisted. Additionally, empirical calibration dramatically reduced type 1 to nominal but came at the cost of increasing type 2 error
    corecore