1,994 research outputs found

    Hybrid and pureline hard winter wheat yield and stability

    Get PDF
    Pureline wheat (Triticum aestivum L.) cultivars continue to dominate production fields in the southern Great Plains despite numerous attempts to introduce hybrids during the past 28 yr. The objective of this study was to analyze yield trends and yield stability in both hybrid and pureline entries in the Oklahoma Variety-Hybrid Performance Nursery (VHPN). Grain yield data from 1975 to 1995 from four locations were selected and analyzed by relative yield indices. Regression equations across time were calculated for both hybrids and pure- lines relative to the mean performance of long-term check cultivars. Both hybrids and purelines evidenced yield improvement, with the yield of hybrids, in general, increasing at a greater rate than that of purelines. Predicted values in the last year tested indicated a 10.9% advantage of hybrids over purelines. Stability parameters were com- pared by regressing hybrid and pureline yields on an environmental index based on location mean yields for checks. Regression coefficients for hybrids and purelines were not significantly different from one, nor from each other. Confidence intervals for hybrid and pureline performance generally overlapped throughout the observed yield ranges, indicating no divergence in predicted grain yield as environ- mental yield potential increased. No significant differences in stability between hybrids and purelines were found by comparing variances represented by the pooled deviations for each cultivar type. Hybrid wheat offers an opportunity for increased grain yield in the southern Great Plains of the USA, but without a stability advantage over pure- line cultivars.Peer reviewedPlant and Soil Science

    Controlling spin relaxation with a cavity

    Get PDF
    Spontaneous emission of radiation is one of the fundamental mechanisms by which an excited quantum system returns to equilibrium. For spins, however, spontaneous emission is generally negligible compared to other non-radiative relaxation processes because of the weak coupling between the magnetic dipole and the electromagnetic field. In 1946, Purcell realized that the spontaneous emission rate can be strongly enhanced by placing the quantum system in a resonant cavity -an effect which has since been used extensively to control the lifetime of atoms and semiconducting heterostructures coupled to microwave or optical cavities, underpinning single-photon sources. Here we report the first application of these ideas to spins in solids. By coupling donor spins in silicon to a superconducting microwave cavity of high quality factor and small mode volume, we reach for the first time the regime where spontaneous emission constitutes the dominant spin relaxation mechanism. The relaxation rate is increased by three orders of magnitude when the spins are tuned to the cavity resonance, showing that energy relaxation can be engineered and controlled on-demand. Our results provide a novel and general way to initialise spin systems into their ground state, with applications in magnetic resonance and quantum information processing. They also demonstrate that, contrary to popular belief, the coupling between the magnetic dipole of a spin and the electromagnetic field can be enhanced up to the point where quantum fluctuations have a dramatic effect on the spin dynamics; as such our work represents an important step towards the coherent magnetic coupling of individual spins to microwave photons.Comment: 8 pages, 6 figures, 1 tabl

    Military maladaptation : counterinsurgency and the politics of failure

    Get PDF
    Tactical learning is critical to battlefield success, especially in a counterinsurgency. This article tests the existing model of military adaption against a ‘most-likely’ case: the British Army’s counterinsurgency in the Southern Cameroons (1960–61). Despite meeting all preconditions thought to enable adaptation – decentralization, leadership turnover, supportive leadership, poor organizational memory, feedback loops, and a clear threat – the British still failed to adapt. Archival evidence suggests politicians subverted bottom-up adaptation, because winning came at too high a price in terms of Britain’s broader strategic imperatives. Our finding identifies an important gap in the extant adaptation literature: it ignores politics.PostprintPeer reviewe

    T2K ECAL Test–beam Proposal

    Get PDF
    The T2K experiment will search for the last unknown element of the neutrino mixing matrix. An crucial component of the near detector for this experiment is the electromagnetic calorimeter which is being built in the UK. Testbeam time is requested to test the full ECAL system, validate calibration techniques, and determine the hadronic and electromagnetic energy scale of the calorimeter

    Refining trait resilience: identifying engineering, ecological, and adaptive facets from extant measures of resilience

    Get PDF
    The current paper presents a new measure of trait resilience derived from three common mechanisms identified in ecological theory: Engineering, Ecological and Adaptive (EEA) resilience. Exploratory and confirmatory factor analyses of five existing resilience scales suggest that the three trait resilience facets emerge, and can be reduced to a 12-item scale. The conceptualization and value of EEA resilience within the wider trait and well-being psychology is illustrated in terms of differing relationships with adaptive expressions of the traits of the five-factor personality model and the contribution to well-being after controlling for personality and coping, or over time. The current findings suggest that EEA resilience is a useful and parsimonious model and measure of trait resilience that can readily be placed within wider trait psychology and that is found to contribute to individual well-bein

    Real-Time Self-Regulation of Emotion Networks in Patients with Depression

    Get PDF
    Many patients show no or incomplete responses to current pharmacological or psychological therapies for depression. Here we explored the feasibility of a new brain self-regulation technique that integrates psychological and neurobiological approaches through neurofeedback with functional magnetic resonance imaging (fMRI). In a proof-of-concept study, eight patients with depression learned to upregulate brain areas involved in the generation of positive emotions (such as the ventrolateral prefrontal cortex (VLPFC) and insula) during four neurofeedback sessions. Their clinical symptoms, as assessed with the 17-item Hamilton Rating Scale for Depression (HDRS), improved significantly. A control group that underwent a training procedure with the same cognitive strategies but without neurofeedback did not improve clinically. Randomised blinded clinical trials are now needed to exclude possible placebo effects and to determine whether fMRI-based neurofeedback might become a useful adjunct to current therapies for depression

    Population of Merging Compact Binaries Inferred Using Gravitational Waves through GWTC-3

    Get PDF
    We report on the population properties of compact binary mergers inferred from gravitational-wave observations of these systems during the first three LIGO-Virgo observing runs. The Gravitational-Wave Transient Catalog 3 (GWTC-3) contains signals consistent with three classes of binary mergers: binary black hole, binary neutron star, and neutron star-black hole mergers. We infer the binary neutron star merger rate to be between 10 and 1700 Gpc-3 yr-1 and the neutron star-black hole merger rate to be between 7.8 and 140 Gpc-3 yr-1, assuming a constant rate density in the comoving frame and taking the union of 90% credible intervals for methods used in this work. We infer the binary black hole merger rate, allowing for evolution with redshift, to be between 17.9 and 44 Gpc-3 yr-1 at a fiducial redshift (z=0.2). The rate of binary black hole mergers is observed to increase with redshift at a rate proportional to (1+z)Îș with Îș=2.9-1.8+1.7 for zâ‰Č1. Using both binary neutron star and neutron star-black hole binaries, we obtain a broad, relatively flat neutron star mass distribution extending from 1.2-0.2+0.1 to 2.0-0.3+0.3M⊙. We confidently determine that the merger rate as a function of mass sharply declines after the expected maximum neutron star mass, but cannot yet confirm or rule out the existence of a lower mass gap between neutron stars and black holes. We also find the binary black hole mass distribution has localized over- and underdensities relative to a power-law distribution, with peaks emerging at chirp masses of 8.3-0.5+0.3 and 27.9-1.8+1.9M⊙. While we continue to find that the mass distribution of a binary's more massive component strongly decreases as a function of primary mass, we observe no evidence of a strongly suppressed merger rate above approximately 60M⊙, which would indicate the presence of a upper mass gap. Observed black hole spins are small, with half of spin magnitudes below χi≈0.25. While the majority of spins are preferentially aligned with the orbital angular momentum, we infer evidence of antialigned spins among the binary population. We observe an increase in spin magnitude for systems with more unequal-mass ratio. We also observe evidence of misalignment of spins relative to the orbital angular momentum
    • 

    corecore