1,920 research outputs found

    Micro/nanofluidic and lab-on-a-chip devices for biomedical applications

    Get PDF
    Micro/Nanofluidic and lab-on-a-chip devices have been increasingly used in biomedical research [1]. Because of their adaptability, feasibility, and cost-efficiency, these devices can revolutionize the future of preclinical technologies. Furthermore, they allow insights into the performance and toxic effects of responsive drug delivery nanocarriers to be obtained, which consequently allow the shortcomings of two/three-dimensional static cultures and animal testing to be overcome and help to reduce drug development costs and time [2–4]. With the constant advancements in biomedical technology, the development of enhanced microfluidic devices has accelerated, and numerous models have been reported. Given the multidisciplinary of this Special Issue (SI), papers on different subjects were published making a total of 14 contributions, 10 original research papers, and 4 review papers. The review paper of Ko et al. [1] provides a comprehensive overview of the significant advancements in engineered organ-on-a-chip research in a general way while in the review presented by Kanabekova and colleagues [2], a thorough analysis of microphysiological platforms used for modeling liver diseases can be found. To get a summary of the numerical models of microfluidic organ-on-a-chip devices developed in recent years, the review presented by Carvalho et al. [5] can be read. On the other hand, Maia et al. [6] report a systematic review of the diagnosis methods developed for COVID-19, providing an overview of the advancements made since the start of the pandemic. In the following, a brief summary of the research papers published in this SI will be presented, with organs-on-a-chip, microfluidic devices for detection, and device optimization having been identified as the main topics.info:eu-repo/semantics/publishedVersio

    The insulin receptor substrate 1 associates with phosphotyrosine phosphatase SHPTP2 in liver and muscle of rats

    Get PDF
    CAPES – COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL E NÍVEL SUPERIORCNPQ – CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOInsulin stimulates the tyrosine kinase activity of its receptor resulting in the phosphorylation of its cytosolic substrate, insulin receptor substrate-1 (IRS-1) which, in turn, associates with proteins containing SH2 domains. It has been shown that IRS-1 associates with the tyrosine phosphatase SHPTP2 in cell cultures. While the effect of the IRS-1/SHPTP2 association on insulin signal transduction is not completely known, this association may dephosphorylate IRS-1 and may play a critical role in the mitogenic actions of insulin. However, there is no physiological demonstration of this pathway of insulin action in animal tissues. In the present study we investigated the ability of insulin to induce association between IRS-1 and SHPTP2 in liver and muscle of intact rats, by co-immunoprecipitation with anti-IRS-1 antibody and anti-SHPTP2 antibody. In both tissues there was an increase in IRS-1 association with SHPTP2 after insulin stimulation. This association occurred when IRS-1 had the highest level of tyrosine phosphorylation and the decrease in this association was more rapid than the decrease in IRS-1 phosphorylation levels. The data provide evidence against the participation of SHPTP2 in IRS-1 dephosphorylation in rat tissues, and suggest that the insulin signal transduction pathway in rat tissues is related mainly to the mitogenic effects of the hormone.Insulin stimulates the tyrosine kinase activity of its receptor resulting in the phosphorylation of its cytosolic substrate, insulin receptor substrate-1 (IRS-1) which, in turn, associates with proteins containing SH2 domains. It has been shown that IRS-1 associates with the tyrosine phosphatase SHPTP2 in cell cultures. While the effect of the IRS-1/SHPTP2 association on insulin signal transduction is not completely known, this association may dephosphorylate IRS-1 and may play a critical role in the mitogenic actions of insulin. However, there is no physiological demonstration of this pathway of insulin action in animal tissues. In the present study we investigated the ability of insulin to induce association between IRS-1 and SHPTP2 in liver and muscle of intact rats, by co-immunoprecipitation with anti-IRS-1 antibody and anti-SHPTP2 antibody. In both tissues there was an increase in IRS-1 association with SHPTP2 after insulin stimulation. This association occurred when IRS-1 had the highest level of tyrosine phosphorylation and the decrease in this association was more rapid than the decrease in IRS-1 phosphorylation levels. The data provide evidence against the participation of SHPTP2 in IRS-1 dephosphorylation in rat tissues, and suggest that the insulin signal transduction pathway in rat tissues is related mainly to the mitogenic effects of the hormone311114091413CAPES – COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL E NÍVEL SUPERIORCNPQ – CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOCAPES – COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL E NÍVEL SUPERIORCNPQ – CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOsem informaçãosem informaçã

    Cytotoxicity and antitumoral activity of dichloromethane extract and its fractions from Pothomorphe umbellata

    Get PDF
    The cytotoxicity of the dichloromethane crude extract (DCE), obtained from the aerial parts of Pothomorphe umbellata (L.) Miq (Piperaceae), was evaluated against nine human cancer cell lines (MCF-7, NCI-ADR/RES, OVCAR-3, PC-3, HT-29, NCI-H460, 786-O, UACC-62, K-562). The DCE presented antiproliferative activity with good potency against all cell lines at low concentrations (between 4.0 and 9.5 µg/mL) and with selectivity (1.55 µg/mL) for the leukemia cell line (K-652). DCE (100, 200, 300 and 400 mg/kg, ip) was also evaluated in the Ehrlich ascites tumor model. Both the survival number and the life span of the animals that died increased by at least 45 and 50%, respectively (8 animals per group), demonstrating P. umbellata extract potential anticancer activity. The results of the in vivo antitumor activity prompted the fractionation of the crude extract. The crude extract was submitted to dry column chromatography with dichloromethane-methanol (99:1). The column effluent fractions were extracted with methanol, dried under vacuum yielding fractions FR1 (less polar), FR2 (medium polarity), and FR3 (polar), which were analyzed for their growth inhibition or cytotoxic properties by a 48-h sulforhodamine B cell viability assay by measuring the total protein content. FR1 demonstrated high potency and cytotoxicity, a result compatible with the high toxicity of oxalic acid; FR2, containing 4-nerolidylcathecol, presented the lowest cytotoxic activity compared to the other two fractions but with selectivity for prostate cancer cell line; FR3, containing a mixture of steroids described in the literature as possessing various biological activities, also presented potent anticancer in vitro activity. These results suggest that P. umbellata DCE in vivo antitumor activity may be a consequence of the activity of different active principles.41141

    Synthesis, in vitro antiproliferative and anti-mycobacterium tuberculosis activities of novel β-carboline derivatives

    Get PDF
    A series of β-carboline derivatives with amino or guanidinium were synthesized and evaluated in vitro against anti-Mycobacterium tuberculosis and for antiproliferative activities against nine human cancer cell lines. The compounds 1-(4-hydroxyphenyl)-3-carboxamide(ethylamine) β-carboline (24.9 μg mL-1) and 1-(4-methoxyphenyl)-3-carboxamide(ethylamine) β-carboline (26.9 μg mL-1) were the most active against M. Tuberculosis (MTB). Compounds 1-(4-hydroxyphenyl)-3-carboxamide(ethylamine) β-carboline and 1-(4-methoxyphenyl)-3-carboxamide(propylamine) β-carboline, which had the same substituted groups, inhibited the growth of all human tumor cell lines with growth inhibitory activity (GI50) values from 1.37 to 9.20 mmol L-1. Also in this series, compounds 1-(4-hydroxyphenyl)-3-carboxamide(propylamine) β-carboline and 1-(3-nitrophenyl)-3-carboxamide(propylamine) β-carboline demonstrated significant activity against NCI/ADR cells. Among compounds with a terminal guanidine group, compounds 1-(4-hydroxyphenyl)-3-carboxamide(ethyl)guanidine β-carboline (27.8 μg mL-1) and 1-(3-nitrophenyl)-3-carboxamide(ethyl) guanidine β-carboline (37.4 μg mL-1) demonstrated the greatest activity against MTB. Additionally, compounds 1-(4-methoxyphenyl)-3-carboxamide(ethyl)guanidine β-carboline (GI50 = 0.45 mmol L-1) effectively inhibited growth and was highly selective against NCI/ADR. The in silico study revealed that 1-(4-hydroxyphenyl)-3-carboxamide(ethylamine) β-carboline, 1-(4-methoxyphenyl)-3-carboxamide(ethylamine) β-carboline, 1-(4-hydroxyphenyl)-3-carboxamide(propylamine) β-carboline, 1-(4-methoxyphenyl)-3-carboxamide(propylamine) β-carboline and 1-(3-nitrophenyl)-3-carboxamide(propylamine) β-carboline compounds follow the rules established by Lipinski, suggesting that this compound has no problems with oral bioavailability.27813981405CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESSem informaçãoSem informaçã

    Synthesis, In Vitro Antiproliferative And Anti-mycobacterium Tuberculosis Activities Of Novel β-carboline Derivatives

    Get PDF
    Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)A series of β-carboline derivatives with amino or guanidinium were synthesized and evaluated in vitro against anti-Mycobacterium tuberculosis and for antiproliferative activities against nine human cancer cell lines. The compounds 1-(4-hydroxyphenyl)-3-carboxamide(ethylamine) β-carboline (24.9 μg mL-1) and 1-(4-methoxyphenyl)-3-carboxamide(ethylamine) β-carboline (26.9 μg mL-1) were the most active against M. Tuberculosis (MTB). Compounds 1-(4-hydroxyphenyl)-3-carboxamide(ethylamine) β-carboline and 1-(4-methoxyphenyl)-3-carboxamide(propylamine) β-carboline, which had the same substituted groups, inhibited the growth of all human tumor cell lines with growth inhibitory activity (GI50) values from 1.37 to 9.20 mmol L-1. Also in this series, compounds 1-(4-hydroxyphenyl)-3-carboxamide(propylamine) β-carboline and 1-(3-nitrophenyl)-3-carboxamide(propylamine) β-carboline demonstrated significant activity against NCI/ADR cells. Among compounds with a terminal guanidine group, compounds 1-(4-hydroxyphenyl)-3-carboxamide(ethyl)guanidine β-carboline (27.8 μg mL-1) and 1-(3-nitrophenyl)-3-carboxamide(ethyl) guanidine β-carboline (37.4 μg mL-1) demonstrated the greatest activity against MTB. Additionally, compounds 1-(4-methoxyphenyl)-3-carboxamide(ethyl)guanidine β-carboline (GI50 = 0.45 mmol L-1) effectively inhibited growth and was highly selective against NCI/ADR. The in silico study revealed that 1-(4-hydroxyphenyl)-3-carboxamide(ethylamine) β-carboline, 1-(4-methoxyphenyl)-3-carboxamide(ethylamine) β-carboline, 1-(4-hydroxyphenyl)-3-carboxamide(propylamine) β-carboline, 1-(4-methoxyphenyl)-3-carboxamide(propylamine) β-carboline and 1-(3-nitrophenyl)-3-carboxamide(propylamine) β-carboline compounds follow the rules established by Lipinski, suggesting that this compound has no problems with oral bioavailability. © 2016 Sociedade Brasileira de Química.27813981405CAPES, Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorCNPq, Conselho Nacional de Desenvolvimento Científico e TecnológicoCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    In vitro biomodels in stenotic arteries to perform blood analogues flow visualizations and measurements: a review

    Get PDF
    Cardiovascular diseases are one of the leading causes of death globally and the most common pathological process is atherosclerosis. Over the years, these cardiovascular complications have been extensively studied by applying in vivo, in vitro and numerical methods (in silico). In vivo studies represent more accurately the physiological conditions and provide the most realistic data. Nevertheless, these approaches are expensive, and it is complex to control several physiological variables. Hence, the continuous effort to find reliable alternative methods has been growing. In the last decades, numerical simulations have been widely used to assess the blood flow behavior in stenotic arteries and, consequently, providing insights into the cardiovascular disease condition, its progression and therapeutic optimization. However, it is necessary to ensure its accuracy and reliability by comparing the numerical simulations with clinical and experimental data. For this reason, with the progress of the in vitro flow measurement techniques and rapid prototyping, experimental investigation of hemodynamics has gained widespread attention. The present work reviews state-of-the-art in vitro macro-scale arterial stenotic biomodels for flow measurements, summarizing the different fabrication methods, blood analogues and highlighting advantages and limitations of the most used techniques.This work has been supported by FCT – Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020, UIDB/04077/2020, UIDB/00690/2020, UIDB/04436/2020 and NORTE-01-0145-FEDER-030171, NORTE-01-0145-FEDER-029394 funded by COMPETE2020, NORTE 2020, PORTUGAL 2020, Lisb@2020 and FEDER.info:eu-repo/semantics/publishedVersio

    Fluid flow and structural numerical analysis of a cerebral aneurysm model

    Get PDF
    Intracranial aneurysms (IA) are dilations of the cerebral arteries and, in most cases, have no symptoms. However, it is a very serious pathology, with a high mortality rate after rupture. Several studies have been focused only on the hemodynamics of the flow within the IA. However, besides the effect of the flow, the development and rupture of the IA are also associated with a combination of other factors such as the wall mechanical behavior. Thus, the objective of this work was to analyze, in addition to the flow behavior, the biomechanical behavior of the aneurysm wall. For this, CFD simulations were performed for different Reynolds numbers (1, 100, 500 and 1000) and for two different rheological models (Newtonian and Carreau). Subsequently, the pressure values of the fluid simulations were exported to the structural simulations in order to qualitatively observe the deformations, strains, normal stresses and shear stress generated in the channel wall. For the structural simulations, a hyperelastic constitutive model (5-parameter Mooney–Rivlin) was used. The results show that with the increase in the Reynolds number (Re), the recirculation phenomenon is more pronounced, which is not seen for Re = 1. The higher the Re, the higher the strain, displacement, normal and shear stresses values.The authors acknowledge the financial support from the project EXPL/EME-EME/0732/2021, funded by the NORTE 2020 Portugal Regional Operational Programme, under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (FEDER) and by Fundação para a Ciência e Tecnologia (FCT). This work was also supported by Fundação para a Ciência e a Tecnologia (FCT) under the strategic grants UIDB/04077/2020, UIDB/04436/2020, UIDB/00319/2020 and UIDB/00532/2020. Andrews Souza and Violeta Carvalho also acknowledge the financial support by FCT through the individual research grants 2021.07961.BD and UI/BD/151028/2021, respectively.info:eu-repo/semantics/publishedVersio

    Serum antioxidants as predictors of the adult respiratory distress syndrome in septic patients

    Get PDF
    Adult respiratory distress syndrome (ARDS) can develop as a complication of various disorders, including sepsis, but it has not been possible to identify which of the patients at risk will develop this serious disorder. We have investigated the ability of six markers, measured sequentially in blood, to predict development of ARDS in 26 patients with sepsis. At the initial diagnosis of sepsis (6-24 h before the development of ARDS), serum manganese superoxide dismutase concentration and catalase activity were higher in the 6 patients who subsequently developed ARDS than in 20 patients who did not develop ARDS. These changes in antioxidant enzymes predicted the development of ARDS in septic patients with the same sensitivity, specificity, and efficiency as simultaneous assessments of serum lactate dehydrogenase activity and factor VIII concentration. By contrast, serum glutathione peroxidase activity and α1Pi-elastase complex concentration did not differ at the initial diagnosis of sepsis between patients who did and did not subsequently develop ARDS, and were not as effective in predicting the development of ARDS. Measurement of manganese superoxide dismutase and catalase, in addition to the other markers, should facilitate identification of patients at highest risk of ARDS and allow prospective treatment
    corecore