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In the post-genomic era, characterisation of pathways involved in 
protein turnover has been a major area of research in medicine. The 
discovery of ubiquitin and thereafter the proteasome has revolutionised 
the understanding of the mechanisms responsible for protein regulation, 
also known as proteostasis. The proteasome acts as a nanomachine in 
eukaryotic and archaeal cells, responsible for proteolysis of soluble 
proteins that are tagged for degradation. This is achieved by selective 
ubiquitination of target proteins, a process that involves the covalent 
attachment of a poly-ubiquitin chain to the protein that is marked for 
recycling. In recent years, dysfunction of the ubiquitin-proteasome 
system has been linked to numerous human diseases which has led to the 
development of novel therapies using proteasome inhibitors. In this 
dissertation, we explore the contributions of the proteasome to retinal 
pathology and discuss strategies of therapeutic proteasome modulation 
in the retinal pigment epithelium.

Emanuel Ramos de Carvalho is an ophthalmologist affiliated with Moorfields 
Eye Hospital NHS Foundation Trust in London where he specialises in Medical 
Retina, Neuro-ophthalmology and Genetics. His doctorate research was 
conducted at the Academic Medical Centre of the University of Amsterdam, The 
Netherlands. His primary areas of research include inherited eye diseases, 
artificial intelligence and virtual reality applied to ophthalmology.
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General introduction
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Age-related macular degeneration 

Age-related macular degeneration (AMD) is the leading cause of irreversible blindness 
in the Western world,97 with a prevalence that is expected to rise to 97% by the year 
2050 alongside increased life expectancy.116 The disease has a broad phenotypical 
presentation, but is usually divided into exudative versus non-exudative. The non-
exudative or dry form is characterized by the development of geographic atrophy with 
degeneration of the retinal pigment epithelium (RPE), outer layers of the neurosensory 
retina and the choriocapillaris. The exudative or wet or neovascular form is defined 
by the development of choroidal neovascularization, in which neovascular complexes 
infiltrate the subretinal space or the anatomical space located between the RPE and 
Bruch’s membrane.97 Both subtypes, although linked to distinct pathogenic pathways, 
ultimately lead to atrophy of the neurosensory retina and ensuing irreversible visual 
loss. Other relatively common causes of visual loss include development of subretinal 
fibrosis and hemorrhage.14; 26 Subretinal fibrosis in AMD occurs within a context of a 
dysregulated wound response often secondary to choroidal neovascularization.14; 26; 127

The multifactorial cascade of events leading to AMD is complex and involves numerous 
pathogenic pathways. One of the first features of “early” AMD is the accumulation 
of focal deposits of extracellular material located under the RPE (classical soft and 
cuticular drusen) or above the RPE (subretinal drusenoid deposits).134 Drusen contain 
carbohydrates, zinc and nearly 150 proteins, including  vitronectin, apolipoproteins 
E and B, clusterin, connective tissue growth factor (CTGF) and complement system 
components.24; 107 The RPE cell monolayer is regarded as the primary mediator of 
disease initiation and progression in AMD. RPE cells participate in the visual cycle and 
are responsible for phagocytosis of photoreceptor outer segments, maintenance of the 
outer blood-retina barrier, secretion of neurotrophic, inflammatory and vasculotrophic 
growth factors, fluid movement from the subretinal space and ionic transport 
regulation between the choroid and the retina.73; 135 In addition, thickening of Bruch’s 



membrane, combined with accumulation of diffuse lipid aggregates has been reported 
to contribute to AMD pathogenesis by affecting RPE cell adhesion and migration and 
impeding choroidal and retinal cell migration.157 Impaired outer retinal perfusion due 
to choriocapillaris changes has also been proposed as a pathogenic causative factor.157 
In the past two decades, several contributing environmental and genetic risk factors 
associated with the development of AMD have been identified. Smoking is the most 
consistently established environmental risk factor.131; 139 Additionally, obesity, sunlight 
exposure and nutritional factors, such as antioxidant and fat intake have been identified 
as important risk factors.10; 22; 49; 85; 88; 101; 110; 130; 133 The discovery of genetic risk variants 
in genes involved in inflammation and immune pathways was a major breakthrough 
in the understanding of AMD, attributing a role for chronic local inflammation and 
immune-mediated effects in its pathogenesis.7; 8; 30; 31; 37; 38; 41; 55; 67; 68; 79; 89 Variants in 
genes involved in regulation of the complement pathway, namely Complement Factor 
H (CFH ), Complement Factor B (CFB), Complement Component C2, Complement 
Component C3 and Complement Factor I (CFI ) as well as others unrelated to the 
complement pathway such Age-Related Maculopathy Susceptibility 2 (ARMS2) and 
High Temperature Requirement A Serine Peptidase 1 (HTRA1)  account for a large 
proportion of the genetic risk.8 
Presently, the sole recommended treatment for patients with intermediate to advanced 
AMD in one eye is supplementation with a specific formulation of antioxidants and 
minerals which has been demonstrated to modestly reduce the risk of developing 
advanced AMD, including neovascular AMD.1 For neovascular AMD, the advent 
of treatment options directed at vascular endothelial growth factor (VEGF) has 
greatly impacted the natural history of the disorder.21 Notwithstanding, in spite of 
the immense progress achieved over the past two decades, AMD remains a complex 
multifactorial disease, often refractory to current treatment modalities. Assessment and 
characterization of novel molecular pathways are of paramount importance to drive 
the development of new therapeutic targets aimed at preventing or treating events 
associated with irreversible visual loss in advanced AMD, such as fibrosis, macular 
atrophy and choroidal neovascularization refractory to anti-VEGF treatment.  

The ubiquitin-proteasome system

The ubiquitin-proteasome system (UPS) is a multisubunit protein complex that is 
responsible for non-lysosomal proteolysis in all types of eukaryotic cells.23; 29 In 2014, 
the Nobel Prize in Chemistry was awarded to Aaron Ciechanover, Avram Herschko 
and Irwin Rose for their discovery of ubiquitin-mediated proteolysis and in recognition 
of the importance of this pathway in maintenance of a regular protein homeostasis 
(proteostasis).113; 48 
Protein quality control encompasses mechanisms of protein synthesis, folding, 
unfolding and clearance or turnover.124 The first quality control mechanism is mediated 



14

by molecular chaperones, a group of multidomain proteins, that recognize misfolded 
proteins. Proteins are then arrested or unfolded and targeted for protein refolding which 
is accomplished by heat shock proteins (HSPs).123  If this fails, proteins are targeted 
to be cleared. Protein turnover in eukaryotic cells relies on two main pathways: the 
UPS and the lysosomal/autophagosomal degradation system. The latter targets long-
lived proteins and large structures such as protein aggregates. Improper clearance by 
autophagy, alongside reduced lysosomal activity, results in the accumulation of toxic 
pro-inflammatory aggregates.48 The UPS is responsible for the turnover of short-lived 
and misfolded proteins which comprise the majority (80-90%) of cellular proteins in 
eukaryotic cells.58; 59; 60 The importance of efficient proteostasis mechanisms for the 
health of cells and longevity of organisms is attested by the fact that 1% of the total 
cellular protein content represents UPS-related proteins.23 In recent years, UPS 
dysfunction has been implied in the pathogenesis of many diseases including various 
ophthalmic conditions such as AMD.15; 34; 36; 42; 43; 44; 45; 47; 48; 52; 61; 65; 75; 76; 77; 82; 83; 84; 95; 98; 104; 119; 

125; 128; 143; 152; 156; 159; 160 Taking this into account, targeting of the UPS has been proposed 
as a powerful therapeutic strategy in cancer therapy and in other diseases in which 
abnormal proteostasis is considered to play a primary role.20; 25; 32; 36; 40; 54; 92; 147 
Proteins are targeted for proteasomal degradation by a process that involves tagging by a 
poly-ubiquitin chain in an ATP-dependent reaction after activation by an E1 ubiquitin-
activating enzyme, followed by binding to an E2 conjugating enzyme and consecutive 
binding of the ubiquitin moiety to a lysine residue present in the protein to be degraded 
via an E3 ligase. Successive ubiquitination ultimately forms a poly-ubiquitin chain 
which enables recognition of the protein and consequent unfolding and degradation 
by the 26S proteasome.57 The 26S proteasome is composed of the 20S core proteasome 
and the 19S regulatory particle. The 19S regulatory particle is involved in recognition 
and de-ubiquitination of the poly-ubiquitinated substrate facilitating its entry into the 
20S core. The 20S proteolytic core consists of four stacked rings, each composed of 
seven catalytic subunits.64; 140 The two outer rings, composed of the a-subunits, control 
the opening and closure of the cylindrical core. The inner two rings contain seven 
b-subunits of which three have proteolytic activity for a specific set of amino acids; β1 
with caspase-like activity (proteolysis of acidic residues), β2 with trypsin-like activity 
(proteolysis of basic residues) and β5 with chymotrypsin-like activity (proteolysis of 
hydrophobic residues). The amino acid chains are cleaved by the N-terminal threonine 
residue of the catalytic subunits.9; 64; 132; 140 After release, these smaller peptides can be 
processed by peptidases for antigen presentation or recycled into amino acids. The 
proteasome activator (PA)28g or the PA28Αb activating cap can replace the 19S cap. 
Opening of the a-gate is achieved either by recognition of substrates by the 19S cap or 
by docking of the proteasome activators.50; 99 The PA28 caps, unlike the 19S cap, are 
ATP independent and unable to recognize ubiquitinated and folded proteins. However, 
depending on the substrate, the peptidase activity of the proteasome can, in this manner, 
be stimulated up to 200-fold.99; 141 PA28ab expression can be induced by interferon-γ 
(IFNγ) which was used to demonstrate maximal proteasomal activation throughout 



our experiments. When PA28ab is bound to the proteasome, proteolytic activities 
of all three catalytic subunits are elevated114 due to a structural change of the 20S 
core and increased accessibility of the catalytic subunits.33; 63 Furthermore, by opening 
the a-gate, peptide release is increased, enabling more peptides to be recognized for 
antigen processing through binding to major histocompatibility complex (MHC) 
class I molecules.153 The second proteasome activator, PA28γ, participates in a wider 
range of cellular processes including cell cycle regulation and apoptosis.115 Proteasome 
activation by PA28γ mainly increases trypsin-like (β2) activity.53; 93 
The constitutive catalytic subunits b1, β2 and β5 can be replaced by the inducible 
immunosubunits β1i (LMP2), β2i (MECL1) and β5i (LMP7), forming the so-called 
immunoproteasome. Interferon-γ is one of the inducers of the immunoproteasome. 
This change in conformation induces significant changes in the level of proteasome-
mediated proteolytic activity, namely downregulation of the caspase-like activity 
and upregulation of the trypsin-like and chymotrypsin-like activity.4; 39; 51 The 
immunoproteasome is involved in several cellular processes such as generation of 
immunogenic peptides for MHC class I recognition,46; 60; 121 degradation of oxidized 
proteins,35 cell signaling71; 76 and neuroprotection.46 Therefore, the ratio between the 
constitutive and inducible subunits is considered to be a marker of cellular stress. 

The ubiquitin-proteasome system and the role of the complement 
pathway in the retinal pigment epithelium 

Similar to other cells, the RPE depends on functional protein degradation systems 
to dispose of unwanted proteins and preserve cellular functions under normal and 
pathogenic conditions. Impairment of protein degradation has been associated with 
the development of several age-related degenerative disorders, especially in post-
mitotic cells, such as neurons and RPE cells.19 The RPE and the retina are constantly 
exposed to high oxidative stress conditions triggered by light exposure, and the high 
rate of metabolism and heterophagy which results in protein damage and subsequent 
protein unfolding. The toxic effects incurred by accumulation of protein aggregates 
and lipofuscin may tip the balance from a para-inflammatory state to the chronic 
inflammatory state that is observed in AMD.48 
The proteasome is involved in several aspects of retinal physiology. The 
immunoproteasome, which is constitutively expressed in immune cells, has also been 
shown to be present, albeit in low concentrations, in the uninjured retina and RPE. As 
previously mentioned, the immunoproteasome has a role in modulation of pathways 
involved in cellular stress responses.100; 128 Its expression is significantly upregulated 
during retinal injury by cytotoxic T-lymphocytes or optic nerve crush,47; 128 oxidative 
stress,75 inflammation62 and aging.76 Moreover, RPE cells deficient in LMP7 and 
MECL1 immuno-subunits have been shown to be less resistant to oxidative stress.75 On 
the other hand, knock-out of the LMP2 immuno-subunit confers neuroprotective effects 
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in traumatic optic neuropathy.128 The pool of proteasomes present in cells appears to be 
dynamic and changes over time. In fact, increased levels of immunoproteasomes have 
been demonstrated in the retina of human donors with AMD,42 and the total content 
of proteasomes was increased (3-fold) when compared to age-matched controls.28 
Likewise, ubiquitin conjugates have been demonstrated in drusen under the macula of 
donors with AMD suggesting that these may occur secondary to impaired proteolysis 
by the UPS.106; 122; 145; 146 In addition, proteasome activity in the neural retina has been 
shown to increase alongside AMD progression,42 although this cannot be assumed to 
reflect the activity of the proteasome in RPE cells, since the effects of cellular stress on 
proteasome function are likely cell-specific.48 
The accumulation of lipofuscin granules within the RPE is a recognized hallmark of 
aging and has been suggested to play a role in the development of AMD. Lipofuscin 
is a polymeric substance, located in lysosomal storage bodies or melanosomes of RPE 
cells80 and primarily composed of cross-linked protein residues that are the result of 
iron-catalyzed oxidative processes.18 With lipofuscin accumulation, both phagocytic 
(heterophagic) and autophagic processes become impaired which in turn results in 
increased transcytosis and exocytosis of proteins and ensuing drusen formation.81; 87; 

137; 145 Human retinal lipofuscin contains the 13-cis isomer iso-A2E and the bis-retinoid 
pyridinium compound, A2E. A2E inhibits lysosomal-driven proteolysis by mechanisms 
involving inhibition of the ATP-driven protein pump13 and increase in lysosomal 
pH.91  Melanosomes accumulate lipofuscin, due to higher oxygen consumption and 
reactive oxygen species production, which may then lead to retinal degeneration and 
local complement activation.154 Activation of the complement system is an established 
pathogenic event linked to AMD and other retinal disorders. The complement system, 
as part of the innate immune response, can be activated via various pathways, namely 
the classical, alternative and lectin pathways.37; 38 Briefly, complement system activation 
involves the following steps: initiation, formation of a C3 convertase, cleavage of 
C3, formation of a C5 convertase, cleavage of C5 and, ultimately, formation of the 
membrane attack complex (C5b-9) that directly lyses targeted (opsonized) pathogens 
or damaged cells. During this cascade of events, complement effector molecules, 
including complement anaphylatoxins C3a and C5a, are released.16 These are potent 
pro-inflammatory molecules that attract and activate leukocytes through interaction 
with their cognate G-protein–coupled receptors.109 Several other non-immune 
functions have been attributed to the complement system such as promotion of tissue 
regeneration, angiogenesis, recruitment of stem cells, neural development and control 
of embryo implantation.118 The effector function of the complement system is non-
specific which may result in unwanted effects in bystander cells. This response can 
be amplified and become pathogenic whenever activation of the complement persists, 
for instance, due to abnormalities in complement regulation. Several complement 
regulators act at different steps of the complement cascade. These can be identified in 
the fluid phase as well as on the surface of tissues and circulating cells.69 AMD is one 
of the human disorders that has been linked to complement dysregulation.8 As such, 



modulation of the complement in AMD and other disorders has been proposed as a 
potential therapeutic strategy.117; 149 Thus far, trials investigating the use of molecules 
blocking the complement pathway at various stages of its activation failed in halting 
progression of AMD.12; 155  

Curcumin

Curcumin [1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione]  is the 
pigment extract of turmeric, a widely-used food condiment in the Indian subcontinent 
that is known for its beneficial effects in the prevention and treatment of various 
pro-inflammatory chronic diseases including neurodegenerative, cardiovascular, 
pulmonary, metabolic, autoimmune and malignant diseases. The number of research 
studies assessing the cellular and molecular effects of curcumin has been increasing 
steadily.3; 11; 17; 56; 66; 108; 120; 126; 142 The pleiotropic effects of curcumin include inhibition 
of pro-inflammatory transcription factor nuclear factor-kappaB (NF-kB), inhibition of 
signal transducer and activator of transcription-3, activation of peroxisome proliferator-
activated receptor-γ (PPARγ), nuclear factor (erythroid-derived) factor-2 (Nrf2) cell-
signaling pathways, upregulation of adiponectin, modulation of several inflammatory 
proteins and cell survival proteins such as histone acetylase, histone deacetylase, 
protein kinases, protein reductases, glyoxalase I, human immunodeficiency virus type 
1 (HIV1) integrase and HIV1 protease.2; 27; 66 Furthermore, one of the effects attributed 
to curcumin is its ability to modulate proteolytic activity by the proteasome.70 In spite 
of the numerous pre-clinical studies, curcumin has not yet been approved as a specific 
treatment because its use is hampered by its poor bioavailability when administrated 
orally.6 Different strategies have been proposed to increase the absorption of curcumin 
such as concomitant administration of piperin, or incorporation of curcumin in 
nanoparticles, liposomes, micelles, or phospholipid complexes.111; 148 
Similarly to the effects described in other tissues and organs, curcumin has been 
demonstrated to have favorable in vitro effects on corneal epithelial cells,21 RPE cells 74; 

86; 96 and neurosensory retina,94; 129; 144; 150; 151; 158 suggesting a potential role for curcumin 
in ophthalmic disorders. Contradictorily, other studies have warned of potential toxic 
effects of curcumin in RPE cells5; 72; 136 and retinal endothelial cells112  suggesting that 
retinal function ought to be monitored during concomitant intake of curcumin.72 
One should take into account that the effects of curcumin are highly dependent on 
levels achieved at the target site102; 103 and the formulation of curcumin used.105 Indeed, 
curcumin is known to be a hormetic compound, i.e. toxic at high doses but able to 
exert adaptive stress responses at lower doses.102; 103 Therefore, extrapolation of pre-
clinical findings and effects of curcumin in the retina and RPE cells may not be as 
straightforward as initially presumed. 
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Ophthalmic molecular imaging

In recent years, molecular imaging has been hailed as the next frontier in medicine 
and one of the crucial steps in driving medicine towards an era of personalized care. 
The purpose of molecular imaging is to “directly or indirectly monitor and record 
the spatiotemporal distribution of molecular or cellular processes for biochemical, 
biological, diagnostic, or therapeutic applications”.138 In other words, the goal of 
molecular imaging techniques is to target and visualize molecular processes in vivo.90 It 
is presumed that implementation of molecular imaging will facilitate disease detection 
at a preliminary stage, prior to the development of structural changes and organ 
dysfunction. This allows early diagnosis and targeted intervention with more favorable 
outcomes.   
Broadly speaking, the introduction of molecular imaging techniques in the clinical 
setting has been delayed by two major obstacles: approval of contrast agents and 
development of feasible imaging modalities. Molecular imaging relies on the use 
of extrinsic contrast agents that are specific for the molecular processes of interest. 
Development of these contrast agents and approval for use in human subjects has been 
slower than expected. At present, most studies have been confined to small animals. 
Furthermore, applicability of these techniques depends on the development of feasible, 
non-invasive and reproducible imaging techniques that allow the visualization of such 
contrast agents. In spite of these inherent difficulties, several molecular imaging clinical 
applications have already been described.78 
The myriad of ophthalmic imaging modalities attests to the accessibility of the human 
eye. Indeed, ophthalmology may be one of the first medical fields to streak ahead in the 
race to introduce molecular imaging in clinical care. 
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The primary aims of this thesis are the assessment of molecular mechanisms 
of complement-mediated proteasome regulation, the role of the proteasome in 
retinal pigment epithelium (RPE) fibrosis and proteasomal pharmacological 
modulation. Secondarily, we assess the effects of a complement-modulating 
drug in the retina and describe the development of a multispectral imaging 
device that potentially allows the visualization of molecular processes in vivo. 

In Chapter 3, we investigate whether the complement pathway is involved in 
modulation of proteasome activity and expression in RPE cells. Proteasome 
and immunoproteasome expression is first characterized in a mouse model 
of age-related RPE degeneration (monocyte chemoattractant protein-1–
deficient CCL2−/− mouse). Subsequently, we assess the effects of complement 
activation by means of the complement anaphylatoxins C3a and C5a in 
human donor RPE cells. 

In Chapter 4, we investigate the role of the proteasome in the expression 
of extracellular matrix genes and whether pharmacological inhibition of 
the proteasome downregulates transcription of extracellular matrix genes. 
Human RPE cells (ARPE-19) are stimulated with two of the main fibrogenic 
factors in the retina, transforming growth factor-β (TGFβ) and connective 
tissue growth factor (CTGF) and epoxomicin, an irreversible inhibitor of 
the proteasome. We then proceed to assess their effects on the expression 
of known retinal fibrogenic factors such as fibronectin (FN), fibronectin 
EDA domain (FN EDA), metalloproteinase-2 (MMP-2), tissue inhibitor 
of metalloproteinases-1 (TIMP-1) and peroxisome proliferator-associated 
receptor-γ (PPARγ).

In Chapter 5, we explore the potential proteasome-modulating effects of 
standard curcumin and nano-curcumin, which is a highly bioavailable form 
of curcumin dispersed with colloidal nanoparticles. Preliminary cytotoxicity 
studies are conducted in order to evaluate the safety of in vitro treatment of 
RPE cells (ARPE-19) with these drugs. We then characterize and compare 
the effects of both curcuminoid formulations with regards to proteasome 
gene transcription, protein transcription and proteolytic activity. 

In Chapter 6, we describe the use of eculizumab, a monoclonal antibody 
directed against the complement protein C5 in one patient with Purtscher-
like retinopathy. Eculizumab arrests the cleavage of C5 and halts the 
process of complement-mediated cell lysis. This antibody has already been 
approved in the treatment of life-threatening diseases that are characterized 
by dysregulated complement activation, namely atypical hemolytic uremic 
syndrome and paroxysmal nocturnal hemoglobinuria. Purtscher-like 



retinopathy is used as a model of a retinal disorder primarily mediated by 
complement activation. Based on our findings, we review the molecular 
mechanisms of Purtscher-like retinopathy, highlighting the differences with 
the role of the complement pathway in age-related macular degeneration.

In previous experiments, we assessed the expression of the proteasome and its 
inducible counterpart, the immunoproteasome, in CCL2−/− mice. 
In Chapter 7, we describe the development of a retinal spectral imaging 
device that is constructed to serve as an imaging tool for ophthalmic molecular 
imaging. The unavailability of approved proteasome-labeling agents and 
the poor spectral properties of nano-curcumin hindered our initial aim of 
visualizing living proteasomes and nano-curcumin in the retina. Instead, 
as a proof of concept, we used an intrinsic chromophore, hemoglobin, to 
exemplify the clinical applicability of the retinal spectral imaging device. 

In Chapter 8, we review the most recent advances in the field of ophthalmic 
molecular imaging. 
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Abstract

Complement activation plays an unequivocal role in the pathogenesis of age-related 
macular degeneration (AMD). More recent evidence suggests an additional role in AMD 
for the ubiquitin proteasome system (UPS), a protein-degradation nanomachinery 
present in all types of eukaryotic cells. The purpose of this study was to elaborate on 
these findings and investigate whether the complement system directly contributes to 
derangements in the UPS through the activated complement components C3a and C5a.
In the retinal pigment epithelial cells (RPE) of monocyte chemoattractant protein-1–
deficient CCL2−/− mice, a mouse model that may serve as a model for age-related atrophic 
degeneration of the RPE, proteasome function was investigated by immunohistochemistry 
of household (β5) and immuno (β5i) subunit expression. Subsequently, proteasome overall 
activity was determined using the BodipyFl-Ahx3L3VS probe in primary-cultured 
human retinal pigment epithelial cells (HRPE) cells that were exposed to different stimuli 
including C3a and C5a, using confocal laser scanning microscopy and flow cytometry. 
Gene expression and protein levels of proteasome subunits α7, PA28α, β5, and β5i were 
also studied in RPE cells after exposure to interferon-γ (IFNγ), C3a, and C5a by real-
time PCR and Western blotting.
Retinal pigment epithelial cells of CCL2−/−  mice showed immunoproteasome 
upregulation. C3a, but not C5a supplementation, induced decreased proteasome overall 
activity in HRPE cells, whereas mRNA and protein levels of household proteasome and 
immunoproteasome subunits were unaffected.
In HRPE cells, C3a induces decreased proteasome-mediated proteolytic activity, whereas 
in a mouse model of age-related RPE atrophy, the immunoproteasome was upregulated, 
indicating a possible role for complement-driven posttranslational alterations in 
proteasome activity in the cascade of pathologic events that result in AMD.



Introduction

Age-related macular degeneration (AMD) is the leading cause of irreversible blindness 
among the elderly worldwide.3; 36 Abnormal complement pathway regulation and 
retinal pigment epithelium (RPE) cell dysfunction have both been implicated in the 
early pathogenesis of the disease,5; 16; 45   and specifically in the formation of drusen.2; 

25   Approximately 70% of AMD patients are homo- or heterozygous for a specific 
polymorphism of the gene encoding for the endogenous complement pathway regulator 
Factor H (CFH), with additional contributions of polymorphisms in the genes encoding 
for Factors B, C2, and C3.35; 51; 62; 63  The single nucleotide change (1277 T→C, rs1061170) 
in the CFH gene results in the substitution of histidine for tyrosine at codon 402 of the 
CFH protein, which subsequently leads to a more than 2-fold increase in risk of AMD in 
CT heterozygotes (carriers of one single copy of the C allele) and a 3- to 6-fold increase 
in individuals homozygous for the CC genotype compared with the TT genotype. 18; 24; 

27; 47; 71 This results in a prolonged state of complement activation, which results in the 
assembly of the C5b-C9 membrane attack complex and cell lysis, concurrently with 
liberation of C3a and C5a, two small pro-inflammatory peptide fragments. Most of the 
complement pathway proteins are present in Bruch’s membrane, drusen, and RPE of 
AMD patients.11; 26; 37; 38; 54; 56 Although the involvement of the complement pathway in the 
pathogenesis of AMD has unambiguously been established, it is not exactly known how 
a chronically overactive complement system triggers the development of AMD.31 
Nonlysosomal proteolysis is essential for cell survival. In eukaryotic cells, the ubiquitin-
proteasome system (UPS) is the major nonlysosomal proteolytic pathway.55  Most 
cytoplasmic and nuclear proteins become ubiquitinated in order to target these 
proteins for degradation. Once ubiquitinated, these proteins are recognized by the 19S 
regulatory particle that together with the 20S catalytic core forms the 26S proteasome. 
Upon de-ubiquitination and unfolding, the protein enters the cylinder-shaped 20S core 
particle, which is formed by stacked catalytic subunits that possess hydrolytic activity 
for the cleavage of the carboxyl end of proteins. There are three catalytic subunits in 
the standard proteasome: β1 for acidic amino acids, β2 for basic amino acids, and β5 
for hydrophobic amino acids. The immunoproteasome is formed upon replacement of 
the constitutive subunits in the standard proteasome by the inducible subunits, the so-
called β1i, β2i, and β5i.12; 46 The immunoproteasome is involved in specific, biological 
processes including generation of immunogenic peptides for antigen presentation,22; 

59 degradation of oxidized proteins,15 cell signaling,2; 28; 29 neuronal maintenance, and 
synaptic vesicle formation.20 Therefore, the ratio between proteasomes containing the 
standard catalytical subunits (β1, β2, and β5) or the corresponding inducible subunits 
(β1i, β2i, and β5i) can change during inflammation and other stressful situations. 
Retinal pigment epithelial (RPE) cells have an active UPS, but relatively limited levels 
of endogenous ubiquitin, which render these cells more vulnerable to cellular stressors.72 

Abnormalities in the UPS have been implied in the pathogenesis of many ageing diseases, 
such as Alzheimer’s disease,32 Parkinson’s disease,13 and cataract.17; 34; 61.  The aim of the 
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present study was to investigate the involvement of the proteasome in AMD in relation 
to complement overactivation. The chymotrypsin-like activity (β5) of the proteasome 
appears to be the rate-limiting activity of the proteasome,10; 49 and it has been shown 
that ageing affects its functioning in the retina.39 For this reason, β5 proteasome subunit 
and its immunoproteasome counterpart β5i were characterized both in cell cultures of 
complement-activated human retinal pigment epithelial cells (HRPE) and in a mouse 
model for age-related atrophic degeneration of the RPE. 

Materials and methods
Immunohistochemistry

To characterize β5 and β5i proteasome subunit expression in the RPE of AMD tissue, 
whole retinal sections (2-μm thick) of 500 day-old monocyte chemoattractant protein-1–
deficient CCL2−/−  mice (n  = 3) and wild-type mice (n  = 3) were stained with mouse 
antibodies against the β5 and β5i subunits of the 20S proteasome and the β5i subunit of 
the 20S proteasome (Abcam, Cambridge, UK) and visualized by immunofluorescence. 
CCL2−/− mice were obtained from The Jackson Laboratory (B6.129S4-Ccl2tm1Rol /J, stock 
no. 004434; Bar Harbor, ME), and these do not contain the rd8 mutation.52 All the animals 
were treated according to the ARVO Statement for the Use of Animals in Ophthalmic 
and Vision Research. Briefly, sections were fixed in 2% paraformaldehyde (Electron 
Microscopy Sciences, Hatfield, PA, USA), equilibrated, and rinsed in 1% PBS four times 
for 5 minutes, blocked in 10% normal goat serum (Invitrogen, Breda, The Netherlands) 
for 30 minutes, again rinsed in 1% PBS three times for 5 minutes. Then, sections were 
incubated in the presence of the primary antibodies for 1 hour at room temperature in a 
dilution of 1:500 followed by rinsing in PBS and incubation with appropriate secondary 
goat anti-mouse antibodies, conjugated with Cy3 in a dilution of 1:500 ( Jackson, Suffolk, 
UK), and rinsed in PBS. Sudan Black B staining was performed by incubating sections 
in a freshly prepared solution of 1% Sudan Black B (Fisher Biotech, Pittsburgh, PA, USA) 
diluted in 70% ethanol for 10 minutes, followed by brief rinsing in 70% ethanol, and 
rinsing in distilled water. As controls, whole retinal sections with no antibody treatment 
nor Sudan Black B staining, as well as whole retinal sections with only Sudan Black B 
staining were used. Sections were counterstained with 4′-6-diamidino-2-phenylindole 
(DAPI; Vector, Burlingame, CA, USA). 

Culture, maintenance and treatment of HRPE cells

Donor eyes were obtained from the Euro Cornea Bank (Beverwijk, The Netherlands) 
after removal of corneal buttons for transplantation. Donor eyes were acquired with 



consent of the donor or donor family to be used for medical research in accordance with 
the principles outlined in the Declaration of Helsinki. Characterization of the donors is 
summarized in Table 1. 

Donor Age Sex Postmortem time (h) Primary Cause of Death

1 13 M 13 Trauma

2 23 M 15 Trauma

3 34 M 13 Trauma

4 37 M 16 Cardiac—endocarditis aorta

5 42 M 14 Respiratory—pulmonary embolism

6 47 F 10 Heart failure

7 49 M 18 Cardiac—heart failure

8 55 M 14 Cardiac—heart failure

9 57 F 10 Malignancy—unknown

10 61 M 7 Respiratory—pulmonary embolism

11 62 M 16 Cardiac—heart failure

12 64 F 9 Malignancy—glioblastoma multiforme

13 65 M 12 Respiratory—respiratory insufficiency

14 68 M 15 Multiorgan failure

15 70 F 5 Respiratory—respiratory insufficiency

16 72 M 6 Malignancy—hepatocarcinoma

17 76 M 8 Heart failure

Table 1. Characterization of the HRPE donors.

For isolation of the HRPE, donor eyes with a post mortem time of less than 15 hours 
(average postmortem time, 12 hours) were obtained from 17 donors between 13 and 
76 years of age. The RPE was isolated from the sclera together with the choroid after 
dissection of the anterior and posterior segment of the eye. The tissue was subsequently 
incubated for 1 hour at 37°C in a 6-well plate with 2 mL digestion medium (TrypLE 
Express; Invitrogen). The RPE and choroid were separated after adding 2.5 mL of F99 
medium to the digestion mixture and transferring the tissue to an empty well containing 
2.5 mL of F99 medium. Medium containing the RPE cells was then transferred to 
a cell strainer with 70-μm meshes and centrifuged for 10 minutes (400g, 1000 rpm). 
Supernatant was collected and diluted in 12 mL F99 medium. A suspension of cells in 1 
mL F99 medium was transferred to a gelatin-coated 6-well plate. 
Growth of cells was monitored and medium was changed every 2 days. After 8 days, 
the confluent cells were washed with PBS and 0.5 mL TrypLE Express, and 1 mL F99 
medium was added. The contents of three wells were then transferred to a fibronectin-
coated 75-cm2 flask, which renders four flasks for passage 1 for each pair of eyes. The 
medium was replaced by human endothelial serum-free medium upon confluence. 
In passages 2 through 4, cells were used for experiments upon attaining 100% 
confluence. The cultured RPE cells exhibited an epithelial cell shape and contained 
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pigment granules in the perinuclear region. The expression of RPE-specific marker 
genes CRALBP, RPE65, and FGFR2as determined by RT-PCR analysis indicated the 
identity and high differentiation state of the cells as well. When cells were cultured on 
transwell inserts, a transepithelial resistance was obtained between 36 and 64 Ω-cm2. 
Proper polarization of HRPE cells was verified by a positive staining of ZO-1 and 
occludin protein (Fig. 1). 

Fig. 1. Characterization of HRPE cells by immunofluorescence microscopy 
with antibodies against tight junction protein ZO-1 and occludin. Human donor RPE 
cells give positive immunostaining for ZO-1 and occludin, which is comparable to staining 
in the immortalized RPE cell line ARPE-19. Donors A and B are two representative 
examples. Scale bar: 50 μm.

To investigate the effect of complement factors, inflammation, and oxidative stress, RPE 
cells were stimulated with C3a (50 ng/mL or 100 ng/ml; R&D Systems, Minneapolis, 
MN), C5a (50 ng/ml; R&D Systems), IFNγ (50 U/mL; PBL Biomedical, Piscataway, 
NJ; and U-CyTech Biosciences, Utrecht, The Netherlands) in serum-free medium for 72 
hours. 

Genotyping

Ten donors were genotyped for the CFH Y402H polymorphism (1277 T→C, rs1061170) 
in 2 ng genomic DNA extracted from RPE cells using a standard Taqman assay (Table 
2).14  
Genotype assessment for CFH Y402H polymorphism in the 10 donors used for protein 



analysis showed six C allele carriers, of which three had the CC genotype, three the CT 
genotype, and four the TT genotype (Table 2). 

Donor Genotype

2 CT

4 TT

3 CT

6 TT

7 TT

8 CC

13 TT

14 CC

16 CC

17 CT

Table 2. Screening for polymorphisms in complement factor-H (CFH Y402H) in 
donors used for protein analysis. 

Preparation of photoreceptor rod outer segments 

Photoreceptor outer segments (POS) were added to cultured HRPE cells to mimic 
the situation in vivo where RPE continually phagocytoses POS. Photoreceptor outer 
segments were isolated from bovine eyes obtained freshly from the slaughterhouse.53; 

57 Photoreceptor outer segments were stored suspended in a solution of 10 mM sodium 
phosphate (pH 7.2), 0.1 M sodium chloride, and 2.5% sucrose at −80°C. Before use, 
POS were thawed and labeled by addition of 20% volume of 1 mg/mL FITC (Molecular 
Probes, Invitrogen, Carlsbad, CA, USA) in 0.1 M sodium bicarbonate (pH 9.0), for 1 
hour at room temperature in the dark. Photoreceptor outer segments were then washed 
and resuspended in cell culture media. 

Proteasome activity measurements by flow cytometry of HRPE cells

Proteasome activity was determined using the probe BodipyFl-Ahx3L3VS (provided by 
Hermen Overkleeft),66 which has a similar affinity for all catalytically active subunits of 
proteasomes in living cells. This probe has a green emission spectrum (1ex = 480 nm, 
1em = 530 nm) and can be used for both flow cytometry (FACS) experiments and confocal 
laser scanning microscopy (CLSM).4; 66

The following cell culture samples were tested for proteasome activity by means of FACS: 
unstimulated HRPE, POS-fed RPE, C3a-stimulated HRPE, C3a-stimulated POS-fed 
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HRPE, IFNγ–stimulated HRPE, and HRPE with and without C3a stimulation treated 
for 1 hour with 500 nM of the proteasome inhibitor epoxomicin (Ep; Sigma-Aldrich, 
St. Louis, MO). In total, seven human donors were used and divided in a “young age” 
group (n = 3; 13, 23, and 37 years old) and an “old age” group (n = 4; 47, 55, 57, and 65 
years old). 
Flow cytometry experiments were performed on a FACS LSRII (Becton Dickinson, 
Breda, The Netherlands). For uptake experiments, untreated cells, and C3a-treated cells 
were incubated with 500 nM BodipyFl-Ahx3L3VS for 2 hours. The treated cells were 
stimulated with 50 ng/mL recombinant human C3a. Cells were washed, trypsinized, 
and resuspended in medium, and intracellular fluorescence was measured. As a negative 
control, cells were incubated with 500 nM Ep overnight. Unstained HRPE cells were 
used to normalize the signal. Two or three parallel wells were used for each experimental 
condition. Approximately 10,000 of unfixed RPE cells were used for the experiments and 
a live gate was used to exclude cell fragments, POS particles, and other unwanted debris. 
The background fluorescence of the system, as assayed without any cells, was subtracted. 
A logarithmic scale of relative fluorescent intensity was used and signal intensity was 
calculated by subtracting the geometric mean autofluorescence of control cells from the 
geometric mean fluorescence of cells incubated with BodipyFl-Ahx3L3VS. 

Confocal laser scanning microscopy

To visualize active proteasomes in HRPE cells using a TCS SP2 CLSM (Leica, Rijswijk, 
The Netherlands), the following cell culture samples were incubated with BodipyFl-
Ahx3L3VS: unstimulated HRPE, C3a-stimulated HRPE, IFNγ-stimulated HRPE, and 
HRPE with and without C3a stimulation treated for 1 hour with Ep. Two samples of 
HRPE cells of two donors were studied. Untreated and C3a-treated cells were incubated 
for 2 hours with the probe and washed with medium before being imaged. Treated HRPE 
cells were stimulated with 50 ng/mL C3a. As a negative control, cells were incubated 
with 500 nM Ep overnight before incubation with the activity probe. 

Protein extraction and Western blot analysis

For Western blot analysis, protein lysates of 10 donors (three samples per experimental 
condition) were collected in 100 mL lysis buffer (1% Triton X-100, 50 mM HEPES, 150 
mM NaCl, 10% glycerol, 1.5 mM MgCl2, 1 mM EGTA, 1 mM phenylmethanesulfonyl 
fluoride, 1X phosphatase inhibitors, and 1X complete protease inhibitors; Roche 
Biochemicals, Almere, The Netherlands). 
Western blot analyses were performed as described previously.60 Twenty micrograms of 
protein were separated on a 12.5% SDS-PAGE, transferred to polyvinylidene difluoride 
membranes and semiquantitatively analyzed. Membranes were incubated for 16 hours 



at 4°C with a monoclonal antibody against the α7 and α2 subunit of the 20S proteasome 
and one of the following polyclonal antibodies: anti-β5 subunit of the 20S proteasome, 
anti-β5i subunit of the 20S proteasome, and anti-11S regulator subunit PA28α (Enzo Life 
Sciences, Zandhoven, Belgium). All primary antibodies were diluted 1:500 in 3% nonfat 
dry milk (Bio-Rad, Hercules, CA) in TBS/0.05% Tween-20. Infrared dye-conjugated 
goat anti-rabbit (for β5, β5i, and PA28α) and goat anti-mouse (for α7 and α2) secondary 
antibodies (LI-COR Biosciences, Lincoln, NE) were diluted 1:10,000. Immune reactions 
were quantified by densitometric analysis using Odyssey (LI-COR Biosciences). Anti–β-
actin antibody was used to stain a reference sample to normalize sample reactions and 
allowed for comparison between blots. All Western blot experiments were performed at 
least twice. 

Proteasome activity measurements in cell extracts

Retinal pigment epithelial cells from a young and old donor were harvested in TSDG 
buffer (10 mM Tris, pH 7.5, 25 mM KCl, 10 mM NaCl, 1.1 mM MgCl2, 0.1 mM 
EDTA, and 8% glycerol) and lysed by three freeze/thaw cycles in liquid nitrogen. After 
centrifugation (15 minutes, 21,000g), the protein concentration in the supernatant was 
determined by a Bradford protein assay (Serva, Heidelberg, Germany). Proteasomes 
were labeled in the lysate with 0.5 μM Bodipy-Ep probe for 1 hour at 37°C.21  Six 
times sample buffer (350 mM Tris/HCl, pH 6.8, 10% SDS, 30% glycerol, and 6% 
β-mercaptoethanol) was added to 30 μg lysate. The samples were boiled for 3 minutes 
and loaded on a 12.5% SDS-PAGE gel. Afterwards, fluorescent imaging was performed 
on a Trio Thyphoon (GE Healthcare, Madison, WI) using the 580 bandpass (BP) 30 
filter to detect the Bodipy-Ep probe directly in the gel. Subsequently, the gels were used 
for Western blot analysis to determine the proteasome levels using α2 subunit levels as a 
loading control, using the MCP236 antibody (Enzo Life Sciences). Antibody detection 
was performed using the Odyssey detection system (LI-COR Biosciences). 

RNA isolation and mRNA quantification

For real-time quantitative PCR (qPCR) experiments, total RNA (6 samples per 
experimental condition) was isolated according to the manufacturer’s instructions 
(TRIzol; Invitrogen) from the RPE of eight donors that were stimulated as indicated 
above. The amount of total RNA was approximately 3 μg/sample. A 1-μg aliquot of total 
RNA was treated with DNase-I (amplification grade; Invitrogen) and reverse transcribed 
into first strand cDNA (Superscript III and oligo[dT],12 –18 Invitrogen). The specificity of 
the primers was confirmed by a nucleotide-nucleotide BLAST (available in the public 
domain athttp://www.ncbi.nlm.nih.gov/blast.cgi; National Center for Biotechnology 
Information, Bethesda, MD) search. Primer details are given in Table 3. The presence of 
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a single PCR product was verified by both the presence of a single melting temperature 
peak and detection of a single band of the expected size on a 3% agarose gel. Quantitative 
PCR was performed (CFX96 system; Bio-Rad). For each primer set, a mastermix was 
prepared, consisting of 1X SYBR Green mix (iQ SYBR Green Supermix; Bio-Rad) 
and 2 pM primers with RNase-free water. One microliter of cDNA (diluted 1:20) in 
19 μL mastermix was amplified using the following PCR protocol: an activation step 
at 95°C for 15 minutes, followed by 40 cycles at 95°C for 10 seconds and at 60°C for 
45 seconds, followed by 95°C for 1 minute and a melting program (60–95°C). Relative 
gene expression (R) was calculated by using the equation: R = E -Ct, where E is the mean 
efficiency of all samples for the gene being evaluated and Ct is the cycle threshold for the 
gene as determined during real-time PCR. The qPCR data were normalized with the 
expression of the YWHAZ gene, as determined by geNorm.65  

Gene GenBank Forward Primer Reverse Primer Size, bp Temp,°C

RPE65 NM_000329 GATGCCTTGGAAGAAGATGATGGTG TCCTTGGCATTCAGAATCAGGAGAT 98 79

RLBP1 NM_000326 GAGAAGCTGCTGGAGAATGAGGAAA TGGGAAGGAATCCTGGAGCATG 144 80

FGFR2 NM_022971 TGATGATGAGGGACTGTTGGCATG TCGAGAGGTTGGCTGAGGTCCA 108 78

PSME1 NM_006263 CAGCCCCATGTGGGTGATTATC GCTTCTCGAAGTTCTTCAGGATGAT 139 82

PSMA7 NM_002792 CCTGGAAGGCCAATGCCATAG TTTGCCACCTGACTGAACCACTTC 149 82

PSMB5 NM_002797 CCATGATCTGTGGCTGGGATAAG GGTCATAGGAATAGCCCCGATC 144 83

PSMB8 NM_004159 CTGGAGGCGTTGTCAATATGTACC GCAGCAGGTCACTGACATCTGTAC 81 76

C5AR1 NM_001736 CCCAGGAGACCAGAACATGAACTC TGACCAAGGCCAGGATGTCTG 143 81

C5L2 NM_018485 GCCAGGACGAAAGTGTGGACAG CCAGCTATGCCTGAAGCCAGTC 136 81

C3AR NM_004054 ACCAGACAGGACTCGTGGAGACAT GCAGAGAAAGACGCCATTGCTAAAC 90 77

Table 3. Primer details (gene nomenclature, GenBank accession code, primer sequences, 
and predicted size and Tm of the amplified product). 

 
 
Statistical analysis

Gene expression data showed a normal distribution. Differences in gene expression 
levels between groups were calculated by using single ANOVA with P < 0.05 indicating 
significant differences (two-tailed). 
For proteasome activity in FACS assays, the total fluorescence intensities from two 
independent preparations in each group were calculated. Data are presented as mean ± 
SEM with statistical differences between groups analyzed by standard two-tailed t-test 
using GraphPad Prism (version 5.00 for Windows,  www.graphpad.com; GraphPad 



Software, San Diego, CA, USA) and a  P  < 0.05 indicating statistically significant 
differences. 

Results
Increased β5i:β5 ratio in RPE of CCL2−/− mice

Immunofluorescence of proteasome subunits β5 and β5i in retinas of CCL2−/−  mice 
(n = 3) and wild-type mice (n = 3) showed the subunits to be localized in nuclei and 
perinuclear regions of RPE cells. Retinal pigment epithelium of age-matched wild-type 
and CCL2−/− mice showed similar levels of β5 staining (Fig. 2A). However, the RPE of 
CCL2−/− mice also showed high levels of the β5i subunit, while no β5i subunit staining 
was observed in RPE of wild-type mice (Fig. 2B). This translated in a higher β5i:β5 ratio 
in the RPE of CCL2−/−  mice. These results suggest that proteasome activity may be 
altered in age-related maculopathy. 

Overall activity of the RPE proteasome is decreased upon C3a 
stimulation in HRPE cells

Overall proteasome activity was visualized in RPE cells at 72 hours by CLSM imaging 
and subsequently quantified by FACS assays using the activity probe BodipyFl-Ahx3L3VS. 
Confocal scanning laser microscope images showed active proteasomes in nuclei and 
cytoplasm of HRPE cells. In comparison to untreated cells, HRPE cells treated for 72 
hours with C3a showed decreased proteasome activity. Cells treated with the proteasome 
inhibitor, Ep, showed 80% inhibition of proteasome activity (n = 7; P < 0.01; Fig. 3). C3a-
treated HRPE cells of younger donors (13–37 years old, n = 3) showed no differences in 
proteasome activity when compared with untreated HRPE (P > 0.05, Fig. 4A), whereas 
C3a-treated HRPE cells of older donors (47–65 years old, n = 4) showed a 37% decrease 
in proteasome activity when compared to age-matched untreated HRPE cells (P  < 
0.05, Fig. 4B). Treatment of HRPE cells with IFNγ caused a 76% increase in proteasome 
activity (n = 7, P < 0.01). Photoreceptor outer segments–fed cells did not show altered 
proteasome activity (data not shown). Moreover, the CFH Y402H polymorphism did 
not affect proteasome activity in untreated and C3a-treated HRPE cells. Overall, these 
results suggest that complement factor C3a causes decreased proteasome activity in 
HRPE cells of older individuals. 
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Fig. 2. (A) Proteasome β5 subunit content is constant in CCL2−/−  mice. 
Whole retina sections from wild-type and CCL2−/−  mice were stained with anti-
proteasome β5 antibody and visualized by immunofluorescence microscopy (in pink). 
Proteasome β5 subunit was present in the nuclei and perinuclear region of the RPE of 
both wild-type and CCL-2−/−  mice. (B) Proteasome β5i subunit protein expression is 
upregulated in CCL2−/− mice. Whole retina sections from wild-type and CCL2−/− mice 
were stained with anti-proteasome β5i antibody and visualized by immunofluorescence 
microscopy. Proteasome β5i subunit was not present in the RPE of wild-type mice. 
Immunoproteasome β5i subunit was upregulated in the nuclei and perinuclear regions 
of the RPE of CCL2−/− mice.



Fig. 3. Proteasome overall activity is decreased upon C3a stimulation of 
HRPE cells from old donors. Proteasome overall activity was assessed in the following 
conditions: unstimulated HRPE, 72-hour C3a stimulation in HRPE, and the same 
conditions after epoxomicin (Ep) treatment for 1 hour. Proteasome overall activity 
was visualized by confocal scanning laser microscopy after treatment with the probe 
BodipyFl-Ahx3L3VS for 2 hours. Epoxomicin, a proteasome inhibitor, is used as a 
negative control and represents minimal proteasomal activity.
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Fig. 4. Proteasome overall activity is decreased upon C3a stimulation of 
HRPE cells from old donors. Proteasome overall activity was assessed in the following 
conditions: unstimulated HRPE, 72-hour C3a stimulation in HRPE of young donors 
(13–37 years old, n = 3) (A), 72-hour C3a stimulation in HRPE of old donors (47–65 years 
old, n = 4) (B), 72-hour treatment of HRPE with IFNγ and HRPE with and without 
C3a stimulation treated for 1 hour with Ep. Proteasome overall activity was measured 
by FACS assay after treatment with the probe BodipyFl-Ahx3L3VS for 2 hours. Data 
of HRPE treated with POS are not shown. Interferon-γ is used as a positive control and 
represents the maximum proteasomal activity; Ep, a proteasome inhibitor, is used as a 
negative control and represents minimal proteasomal activity. Data are expressed as the 
median ± SEM. *, Significant change (P < 0.05).



Specific proteasome subunit activities  
are not affected by C3a in HRPE cells

To further characterize whether decreased overall proteasome activity was due to 
changes in the activities of specific proteasome subunits, we used a Bodipy-Ep probe 
to label the individual catalytic proteasome subunit activities upon separation by SDS-
PAGE (Fig. 5). Retinal pigment epithelial cells from young and old donors were used 
(ages 23 and 65 years old, respectively). As expected, IFNγ caused increased activity 
of immunoproteasomes as indicated by the increase in β2i (14.7-fold higher on average 
in all donors), and β5:5i:1i levels in the young donor (2.7-fold higher when compared 
with control). However, treatment with either a high or low concentration of C3a did 
not induce any changes in β2, β2i, β1, and β5:5i:1i activity levels when compared with 
control HRPE cells. These results indicate that overall decreased proteasome activity 
upon C3a stimulation is not due to changes in the activity of specific proteasome subunit 
complexes. 

Expression of proteasome is not affected by C3a  
stimulation in HRPE cells

To assess whether the observed decrease in proteasome activity upon C3a treatment was 
due to an alteration in expression of proteasome subunits, we measured total proteasome 
content (Fig. 6). Levels of the different proteasome subunits were evaluated using the 
α7 and α2 subunits of the 20S core. Densitometric analysis revealed no statistically 
significant differences in the content of α7 (n = 6) and α2 (n = 8) proteasome subunits 
after treatment with C3a, C5a, or IFNγ.
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Fig. 5. Interferon-γ, but not C3a, increases the average activity of proteasome 
subunits β2, β2i, β1, and β5:β5i:β1i complex both in an old donor (65 years old) and 
young donor (23 years old). (A) After treatment with Ep, IFNγ, and high and low 
concentrations of C3a, HRPE cells were harvested, and proteasomes were labeled with a 
Bodipy-Ep probe. Detection of different proteasome subunit activities was performed by 
Western blotting. Quantitative data of the proteasome activity are presented per donor 
for proteasome subunit β2 (B), β2i (C), β1 (D), and β5:β5i:β1i complex (E).



Fig. 6. The total content of the proteasome α7 and α2 subunit is not increased 
upon stimulation of HRPE cells with C3a. Human retinal pigment epithelial cells were 
incubated for 72 hours with or without C3a, C5a (only for α7), or IFNγ. (A) α7 and α2 levels 
were assessed by Western blot with actin expression as a loading control. (B) Quantitative 
data of the average content of α7 in the different experimental conditions, corrected 
for actin, and relative to control samples in HRPE cells without C3a stimulation. (C) 
Quantitative data of the average content of α2 in the different experimental conditions, 
corrected for actin expression, and relative to control samples in HRPE cells without 
C3a stimulation. Data are expressed as the mean ± SEM. *Significant change (P < 0.05).

Immunoproteasome expression is not affected  
by complement overactivation in HRPE cells

Untreated HRPE cells showed protein levels of both the constitutive subunit β5 and 
the inducible subunit β5i of the proteasome that were similar in C3a-stimulated HRPE 
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cells (n = 8, P > 0.05, Fig. 7). In IFNγ-treated HRPE cells, the protein levels for the 
immuno-subunit β5i were on average 1.8-fold higher than in control HRPE (n = 8, P < 
0.05), whereas those of the constitutive β5 subunit were on average 0.8-fold lower 
than in untreated HRPE (n = 8, P > 0.05). This translated in a statistically significant 
increased average β5i:β5 ratio of 2.3 for IFNγ–treated HRPE cells (n = 8, P < 0.01). 
These results show that inflammatory mediators, but not complement activation, may 
explain the change in the conformation of the proteasome in RPE cells in mice, as the 
decreased proteasome overall activity found in the HRPE cells treated with C3a cannot 
be explained by changes in the content of β5 or β5i. No significant association was found 
between age, CFH Y402H polymorphism and change in proteasome protein content. 

No alterations in PA28 levels upon C3a stimulation in HRPE cells

As changes in proteasome activity can also be induced by the proteasome activator 
PA28, which can replace the 19S cap as an alternative proteasome activator binding to 
the 20S proteasome core, we determined the total content of the proteasome regulatory 
complexes by antibody reactions against the α-subunit of PA28, another proteasome 
regulatory complex. 
We did not find any significant change in content of PA28α protein levels due to C3a 
treatment. A significant 4.6-fold increase was found in IFNγ-stimulated HRPE cells (n = 
5, P < 0.01, Fig. 8). These data suggest that decreased proteasome overall activity upon 
C3a stimulation is not due to altered PA28 levels, a mechanism by which IFNγ and other 
inflammatory mediators are known to upregulate the level of the immunoproteasome. 



Fig. 8. The total content of the proteasome regulatory complex PA28α is 
increased upon stimulation of HRPE cells with IFNγ, but remains unchanged upon C3a 
stimulation. Human retinal pigment epithelial cells were incubated with or without C3a, 
C5a, or IFNγ. (A) PA28α levels were assessed by Western blot with actin used as a loading 
control. (B) Quantitative data of the content of the average content of PA28α, corrected 
for actin, and relative to control samples in HRPE cells without C3a stimulation. Data 
are expressed as the mean ± SEM. *, Significant change (P < 0.05).

C3a stimulation in HRPE cells does not change mRNA  
expression of proteasome-related genes

We assessed mRNA levels of proteasome-related genes,  PSME1  (PA28),  PSMB5  (β5 
subunit), PSMA7  (α7 subunit), and PSMB8  (β5i subunit) in untreated HRPE cells and 
HRPE cells treated with C3a, IFNγ, and H2O2. Expression of the C5a receptors, human 
C5aR (hC5aR) and human C5L2 (hC5L2), as well as the C3a receptor, human C3aR 
(hC3aR), was also determined in order to confirm whether complement receptors were 
expressed in the RPE cells. 
mRNA levels of proteasome-related genes did not significantly change after C3a, C5a, 
and H2O2  treatment for 72 hours. However, IFNγ treatment significantly increased 
mRNA levels of all genes, 4.9-fold for PSMB5  (β5 subunit), 11.9-fold for PSMB8  (β5i 
subunit), 3.2-fold for PSMA7 (α7 subunit), and 3.0-fold for PSME1 (PA28 subunit) (n = 
8, P < 0.05, Fig. 9). Expression of both hC5aR and hC3aR was detected in the HRPE, 
whereas hC5L2 expression was not detected (data not shown). 
These results suggest that the complement factor C3a-induced changes in overall 
proteasome activity are not caused by alterations in gene expression.  
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Fig. 9. Increased mRNA expression of  β5 and α7 subunits by C3a treatment 
in RPE cells. mRNA levels of  PA28α, β5, β5i, and α7 subunits of  the proteasome in HRPE 
cells, which were stimulated with IFNγ, C3a, and C5a for 72 hours. Values represent 
mRNA expression levels (mean ± SEM) relative to untreated control cells. *, Significant 
change (P < 0.05).

 
 
Discussion

This study shows that in primary cultures of HRPE, C3a leads to decreased proteasome-
mediated proteolytic activity, independent of changes in proteasome components at 
the protein or transcriptional level, while in a mouse model of age-related atrophic 
degeneration of the RPE, immunoproteasome upregulation was shown by an increased 
β5i:β5 ratio. Our results support involvement of alterations in proteasome activity in the 
cascade of pathologic events that result in this disease process. 
Interferon-γ had no effect on the total level of proteasomes, but it did cause an 
increase in proteasome overall and specific activities, increased relative expression of 
proteasome regulatory complex PA28α, and increased protein and mRNA expression of 
immunoproteasome subunits. Interferon-γ caused a switch in the predominance of the 
inducible chymotrypsin-like subunit β5i over its normal counterpart β5. The resulting 
β5i:β5 ratio increased by 2.27-fold when compared with unstimulated HRPE. This 
resulted in a high β5i:β5 ratio, which is indicative of more immunoproteasomes. These 
results, which are in accordance with previous studies6; 58; 64 show that the observed 
decreased proteasome activity upon stimulation with C3a cannot be explained by similar 
mechanisms. 
Previous studies have shown that β5-driven proteolytic activity is the rate-limiting 



activity and the primary effector of protein degradation by the proteasome.10; 49 Specific 
inhibition of its activity has the most significant consequences for key processes involved 
in cell survival under stressful conditions. Neuronal cells that over-expressed a mutant β5 
subunit where the active site threonine had been mutated to an alanine were significantly 
hypersensitive to oxidative stress.48  The aged retina is exposed to high oxygen tension, 
high metabolic activity, presence of photosensitive pigments, all culminating in 
generation of reactive oxygen species7  that periodically lead to an imbalance in the 
cellular redox homeostasis. Additionally, and in agreement with our results, proteasome 
function in the retina is known to be affected by aging, with the β5 chymotrypsin–like 
activity of the proteasome being most affected.39 Our results suggest that in addition to 
aging mechanisms, inflammatory mediators such as IFNγ and potentially complement 
overactivation may cause alterations in proteasome activity, which may render the 
RPE less tolerant to oxidative stress due to impairment in the clearance of oxidatively 
damaged proteins. 
Decreased overall proteasome activity in the RPE may indirectly contribute to the 
development of age-related maculopathy. A recent study showed that experimental 
drug-induced proteasome inhibition in the ARPE-19 cell line, a human RPE cell line 
with differentiated properties, leads to accumulation of hypoxia-inducible factor 1-alpha 
and diminished activation of the nuclear factor kappa-light-chain-enhancer of activated 
B cells pathway (NF-κB). This led in turn to enhanced expression and secretion of 
pro-angiogenic factors such as VEGF and angiopoietin-2 together with an attenuated 
expression of monocyte chemotactic protein-1.56; 19  Pathologic angiogenesis due to 
upregulation of VEGF is one of the most important causes of visual deterioration in 
AMD.70

Furthermore, C3a-driven reduced proteasome activity in the RPE could lead to an 
abnormal regulation of key signaling pathways. For instance, the UPS plays a crucial 
role in the regulation of pathways that respond to light damage23; 69 and to melatonin 
production.33 Hence, complement-driven proteasome inhibition could impact the 
circadian cycles of melatonin production and the subsistence of the retina to light-
induced damage. 
Proteasome inhibition has been shown to increase lipofuscin accumulation and in turn, 
lipofuscin inhibits the proteasome system due to proteasomal binding to the lipofuscin 
surface motifs.30 Lipofuscin, a highly oxidized aggregate, consists of covalently cross-
linked proteins, lipids, and sugar residues and is one of the major lifespan-limiting factors 
in post mitotic ageing cells.30 Lipofuscin accumulation in the RPE has been reported in 
aging and has been implied in many ocular disorders such as AMD, Stargardt disease 
and Best vitelliform macular dystrophy. Potential noxious effects of lipofuscin include 
photochemical blue light damage, inhibition of lysosomal digestion and proteins, detergent-
like disruption of membranes, RPE apoptosis, and DNA damage. Lipofuscinogenesis 
translates in increased autofluorescence of the retinal fundus. However, it is still unclear 
whether proteasome inhibition would have the same effects in the RPE because unlike in 
many cell types in which lipofuscin originates internally (autophagy), lipofuscin derives 
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primarily from phagocytosed photoreceptor outer segments in the RPE.7; 8; 40; 41; 42; 43; 44; 68 

Besides our studies in in vitro HRPE models, we also studied proteasome function in a mouse 
model for age-related atrophic degeneration of the RPE. Ambati et al. observed developing 
features of age-related maculopathy and AMD such as accumulation of lipofuscin, drusen 
beneath the RPE, photoreceptor atrophy, and choroidal neovascularization.1 Deposition 
of complement C3 and C5 intermediates within the RPE and the choroid apparently 
precedes the accumulation of lipofuscin and deposits in Bruch’s membrane. This chain of 
events is supposedly similar to the processes occurring in human eyes affected by AMD. 
Complement activation was not present in age-matched wild-type mice.1  The use of 
CCL2−/− mice as a mouse model for AMD has been disputed in recent years. Studies have 
shown that dysfunction of the chemokine ligand–receptor pair CCL2–CCR2 may lead 
to dysregulated retinal para-inflammation mechanisms and retinal lesion development 
with aging, eventually leading to the development of dry AMD-like lesions in these mice.1; 

9 Other studies, however, have failed to show retinal lesions in these mice. Luhmann et 
al. reported increased subretinal macrophage accumulation, but no retinal degeneration 
in aged CCL2−/− mice.50 Vessey et al. showed inner retinal (amacrine cell) dysfunction in 
9-month-old CCL2/CX3CR1GFP/GFP mice.67 In a recent publication, Chen et al. confirmed 
results of previous studies in which deficiency of CCL2 led to an identifiable dry AMD-like 
phenotype. Lesions appeared in these age-dependent CCL2−/−CX3CR1GFP/GFP mice not 
expressing the rd8 mutation, characterized by localized RPE and photoreceptor atrophy 
similarly to the human geographic atrophy dry type of AMD.9 In line with these results, we 
performed experiments with CCL2−/− mice in order to establish an indirect link between 
age, complement activation, and age-related atrophic degeneration of the RPE. Retinas of 
CCL2−/− mice and age-matched wild-type mice were stained for β5 and β5i proteasome 
subunits. Retinas of CCL2−/− mice showed an increased β5i:β5 ratio. This was related to 
a higher content of β5i in the RPE of the knockout mouse model when compared with the 
age-matched control. The increase in the β5i:β5 ratio observed in CCL2−/− mice could be 
one of the rescue mechanisms against retinal toxicity and oxidative stress. 
Our study presents some limitations. It remains inconclusive why retinas of CCL2−/− mice 
show an increased β5i:β5 ratio. A link with the in vitro experiments with HRPE cells 
cannot be established. We could not prove, in vitro, that the induction of β5i was specific 
for complement. The retinas and RPE of CCL2−/−  mice might be exposed to other 
inflammatory mediators that trigger the observed change in proteasome conformation. 
Another limitation of our study deals with estimating subunit composition from Western 
immunoblots in RPE homogenates. Unassembled subunits cannot be distinguished from 
those that are part of the functional complex. Such mechanism of subunit assembly 
may be altered by C3a stimulation. Another limitation of our method is the inability to 
differentiate proteasomes in different cellular compartments. C3a-associated changes 
in subcellular localization would not be detected using our method. Specific functions, 
for instance the degradation of misfolded proteins by proteasomes docked outside the 
endoplasmic reticulum, could be affected should the subcellular content of proteasomes 
be altered. 



In conclusion, our results suggest a link between complement activation and proteasome 
activity in HRPE cells, which may have implications in the development of age-related 
maculopathy and AMD (Fig. 10). This alteration in UPS activity is not caused by 
changes in the proteasome composition itself, and probably occurs at a posttranslational 
level since it is not due to changes in gene expression or changes in the activity of specific 
proteasome subunits. 

Fig. 8. Inflammation model of macular degeneration.6 Age-related macular 
degeneration may be triggered by one or more environmental risk factors coupled with 
a genetic susceptibility profile conferred by variants in the CFH, CFB/C2, and/or C3 
gene triad. Late in life, such features culminate in the development of pathologic changes 
in the RPE–choroid complex, which in turn generate a chronic, local inflammatory 
response characterized by complement over activation, and inflammatory-mediated 
events. According to our results, release of anaphylatoxin C3a, a complement activation 
fragment, together with age-related changes, triggers decreased proteasome overall 
activity. Collectively, complement activation, inflammation-mediated events, and 
possibly proteasome dysfunction result in the photoreceptor degeneration and the loss of 
central vision that defines the clinical entity of AMD.
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Abstract

Emerging evidence suggests that dysfunction of the ubiquitin-proteasome system 
is involved in the pathogenesis of numerous senile degenerative diseases including 
retinal disorders. The aim of this study was to assess whether there is a link between 
proteasome regulation and retinal pigment epithelium (RPE)-mediated expression 
of extracellular matrix genes. For this purpose, human retinal pigment epithelial 
cells (ARPE-19) were treated with different concentrations of transforming growth 
factor-b (TGFβ), connective tissue growth factor (CTGF), interferon-γ (IFNγ) and the 
irreversible proteasome inhibitor epoxomicin. First, cytotoxicity and proliferation assays 
were carried out. The expression of proteasome-related genes and proteins was assessed 
and proteasome activity was determined. Then, expression of fibrosis-associated factors 
fibronectin (FN), fibronectin EDA domain (FN EDA), metalloproteinase-2 (MMP-2), 
tissue inhibitor of metalloproteinases-1 (TIMP-1) and peroxisome proliferator-associated 
receptor- γ (PPARγ) was assessed. The proteasome inhibitor epoxomicin strongly 
arrested cell cycle progression and downregulated TGFβ gene expression, which in turn 
was shown to induce expression of pro-fibrogenic genes in ARPE-19 cells. Furthermore, 
epoxomicin induced a directional shift in the balance between MMP-2 and TIMP-1 and 
was associated with down-regulation of transcription of extracellular matrix genes FN 
and FN-EDA and up-regulation of the anti-fibrogenic factor PPARγ. In addition, both 
CTGF and TGFβ were shown to affect expression of proteasome-associated mRNA and 
protein levels. Our results suggest a link between proteasome activity and pro-fibrogenic 
mechanisms in the RPE, which could imply a role for proteasome-modulating agents in 
the treatment of retinal disorders characterized by RPE-mediated fibrogenic responses. 



Introduction

Age-related macular degeneration (AMD) is a progressive disease of the central retina-
choroid tissue complex and one of the leading causes of blindness worldwide.5 The 
retinal pigment epithelium (RPE), a polarized monolayer of epithelial cells that separates 
the neural retina from the vascularized choroid, has been implied to play an important 
role in the pathogenesis of the disease. Early AMD is characterized by focal drusen 
deposits in the macula, mostly located between the basal lamina of the RPE and the 
inner collagenous layer of Bruch’s membrane.101 Drusen contain carbohydrates, zinc and 
nearly 150 proteins including vitronectin, apolipoproteins E and B, clusterin, connective 
tissue growth factor (CTGF) and complement system components.19; 84 Advanced AMD is 
divided into nonexudative or dry AMD which affects 8% of patients and is characterized 
by macular RPE atrophy and ensuing photoreceptor degeneration, and exudative or 
neovascular AMD (nAMD) which affects 5% of patients and is characterized by the 
development of choroidal neovascularization (CNV).65 CNV may ultimately lead to the 
development of a fibrous plaque or disciform scar that leads to secondary atrophy of the 
neurosensory retina and irreversible and untreatable loss of macular visual function.10; 

40; 58; 76; 98 The advent of anti-vascular endothelial growth factor (VEGF) therapy has 
greatly improved the prognosis of nAMD patients, stabilizing or even improving visual 
function.49; 117; 118 Subretinal fibrosis, however, is a common ensuing process of CNV 
membrane formation, occurring in approximately half of anti-VEGF treated eyes.10; 21; 98

Fibrosis may be considered as a dysregulated wound healing response to tissue damage.55; 

98; 121 Angiogenesis occurs in this process as an initial trigger for fibrin deposition, tissue 
repair, oxygen supply and recruitment of inflammatory cells to the wound.39; 98 In 
AMD, angiogenesis occurs in the subretinal or sub-RPE space, leading to exudation, 
hemorrhage and eventually fibrosis. During this process, various types of cells such as 
RPE cells, glial cells, fibroblasts, myofibroblast-like cells and macrophages infiltrate 
and/or proliferate, secreting pro-angiogenic and pro-fibrogenic factors that interact 
with inflammatory cytokines and growth factors. Prevention of visual loss in AMD may 
therefore depend on the development of successful therapeutic regimens that can halt 
subretinal fibrosis and preserve the RPE.
The fibrogenic response is stimulated by inflammatory-derived cytokines and growth 
factors, including transforming growth factor-b (TGFβ),113 an ubiquitously expressed 
growth factor belonging to the large superfamily of activins/bone morphogenetic 
proteins100 and connective tissue growth factor (CTGF), a member of the connective 
tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed (CCN) family of 
extracellular matrix (ECM) proteins, also known as CCN2.63; 72 The expression of CTGF 
is regulated by TGFβ9; 77; 120 and, likewise, CTGF has been shown to be an important 
mediator of TGFβ signaling and its effects in different cell types.4; 16; 42; 77; 85; 87; 93; 107; 119 We 
and others have shown that both TGFβ and CTGF are major players in the fibrogenic 
response in the retina.55; 63; 67; 68; 69; 70; 71; 84; 106; 108; 109

The ubiquitin-proteasome system (UPS), a multi-catalytic cytoplasmic and nuclear 
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protein complex present in all eukaryotic cells, is responsible for non-lysosomal 
proteolysis and thus maintenance of a normal protein homeostasis in cells.18 Mounting 
evidence suggests that UPS dysfunction is a major pathogenic mechanism in senile 
degenerative disorders,13 including AMD and other ophthalmic conditions.22; 24; 29; 30; 

31; 34; 53; 57; 75; 78; 114 Proteasomes diffuse rapidly in the cytoplasm and nucleus where they 
encounter intracellular proteins that are appropriately tagged or misfolded. Proteins 
are tagged by ubiquitination processes and as such recognized by the 19S regulatory 
particle of the proteasome.92 Ubiquitin has been shown to be uniformly expressed in the 
RPE-Bruch’s membrane complex of patients afflicted with AMD.114 The 19S regulatory 
particle, combined with the 20S catalytic core, forms the standard proteasome. Within 
the proteasome core, specialized catalytic subunits are responsible for the cleavage of the 
carboxyl termini of proteins. There are 3 catalytic subunits in the standard proteasome: 
β1 for acidic amino acids, β2 for basic amino acids, and β5 for hydrophobic amino acids. 
The standard proteasome may in some instances undergo a change in configuration into 
the immunoproteasome. This is achieved upon replacement of the constitutive subunits 
in the standard proteasome by inducible subunits, β1i, β2i, and β5i.20; 64 Although 
uninjured RPE contains a baseline level of immunoproteasome subunits,22 cellular 
stress, such as retinal injury by cytotoxic T-lymphocytes,34 optic nerve trauma,99 aging 
mechanisms,29; 53 complement overactivation,22 chronic oxidative stress52 and exposure to 
pro-inflammatory cytokines22; 41 may increase the number of active immunoproteasome 
subunits. Therefore, the ratio between the nascent (β1, β2, and β5) and inducible subunits 
(β1i, β2i, and β5i) may be used as a marker of cellular stress.34; 52; 53

The aim of the present study was to characterize the involvement of the proteasome 
pathway in TGFβ and CTGF-mediated expression of ECM genes in RPE cells. Likewise, 
potential anti-fibrogenic effects of the selective proteasome inhibitor epoxomicin were 
assessed in ARPE-19 cell cultures. 

Materials and methods 
Culture, maintenance and treatment of ARPE-19 cells 

Experiments were conducted using ARPE-19 cells, a human RPE cell line that 
has structural and functional properties that are characteristic of RPE cells in vivo. 
Monolayers of cells cultured on transwell filters reached a transepithelial resistance of 
30-40 omega cm2 after 3 weeks of culture and expressed CRALBP, as detected by RT-
PCR. Cells were cultured at 37°C in 5% CO2 in gelatin-coated T75 cell culture flasks 
(Corning, Lowell, MA, USA) in Dulbecco Modified Eagle Medium (DMEM; Gibco 
Life Technologies, Carlsbad, CA, USA), low glucose, pyruvate in the presence of 1% 
penicillin/streptomycin and 10% fetal calf serum. Cell growth was monitored and 
medium was changed twice a week. For passaging of cells, TrypLE Express (Invitrogen, 
Carlsbad, CA, USA) was used and cell suspensions were diluted 3-fold. For experiments, 
cells were cultured in 6-well plates. Upon confluence, cells were washed once with 



phosphate-buffered saline (PBS), serum starved for 24 h and then treated with various 
concentrations of the selective and irreversible proteasome inhibitor epoxomicin (Sigma-
Aldrich, St. Louis, MO, USA), rhCTGF (ProSpec-Tany TechnoGene, Rehovot, Israel), 
rhTGFβ1 (ProSpec) and interferon-γ (IFNγ) (PBL Biomedical, Piscataway, NJ, USA). 
All experiments were performed in triplicate and repeated at least twice. 

Gene GenBank Forward primer Reverse Primer Size (bp) Tm (°C)

PSME1 NM_006263 CAGCCCCATGTGGGTGATTATC GCTTCTCGAAGTTCTTCAGGATGAT 139 82

PSMA7 NM_002792 CCTGGAAGGCCAATGCCATAG TTTGCCACCTGACTGAACCACTTC 149 82

PSMB5 NM_002797 CCATGATCTGTGGCTGGGATAAG GGTCATAGGAATAGCCCCGATC 144 83

PSMB8 NM_004159  CTGGAGGCGTTGTCAATATGTACC GCAGCAGGTCACTGACATCTGTAC 81 76

  VEGFA   NM_003375   GGCAGAAGGAGGAGGGCAGAAT   CACCAGGGTCTCGATTGGATGG   91   80

  FN1   NM_002026   TGGGACCGTCAGGGAGAAAATG   CAGGAGCAAATGGCACCGAGAT   167   82

  FN EDA   XM_005246414   GCAGTGACCAACATTGATCGC   ACCCTGTACCTGGAAACTTGCC   110   80

  MMP2   NM_004530   GGAATGCCATCCCCGATAACC   CCAGCTTCAGGTAATAGGCACCCT   93   83

  TIMP1   NM_003254   ACTTCCACAGGTCCCACAACCG   AGGGAAACACTGTGCATTCCTCAC   180   84

  PPARG   NM_138712   CCTGCGAAAGCCTTTTGGTGAC   AAACCTGGGCGGTCTCCACT   135   79

Table 1. Primer details.

Protein extraction 

Cells were harvested using TrypLE Express (Invitrogen), collected in Eppendorf tubes 
and centrifuged for 10 min at 400 g. Supernatant was removed and the pellet was 
suspended in TSDG buffer (10 mM Tris, pH 7.5, 25 mM KCl, 10 mM NaCl, 1.1 mM 
MgCl2, 0.1 mM EDTA, and 8% glycerol), 5 mM ATP and 1x protease inhibitor (Roche 
Applied Science, Penzberg, Germany).  
Cells were lysed with 3 cycles of freezing in liquid nitrogen and thawed at room temp. 
After centrifugation (15 min, 10,000 g), the protein concentration was determined using 
a Bradford protein assay (Serva, Heidelberg, Germany). All experiments were performed 
in triplicate and repeated at least twice.
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Cell cycle and cell viability assays

To assess the viability of healthy ARPE-19 cells and to assess the toxic effects of different 
stimulants used throughout assays, the PrestoBlue cytotoxicity assay (Invitrogen) was 
performed according to the manufacturer’s instructions. The assays were carried out 
in 96-well plates (roughly 10,000-25,000 cells per well). After cells were conditioned 
and washed, PrestoBlue reagent was added to each well. The plates were subsequently 
incubated at 37 °C for the recommended time period (20-30 min). After incubation, the 
solution containing PrestoBlue reagent from the wells of the assay plates was transferred 
to new wells in a 96-well plate, and absorbance was read on a plate reader (Bio-Rad) with 
the excitation/emission wavelengths set at 570/600 nm. 
To evaluate the effects of different stimulants on cell proliferation, the Click-iT EdU Alexa 
Fluor 488 imaging kit (Invitrogen) was applied according to the protocol provided by the 
manufacturer. Briefly, ARPE-19 cells at 30-50% confluence were treated with EdU (10 
µM). EdU was added 2 h prior to the addition of CTGF and TGFβ (both 24 h incubation) 
and epoxomicin (16 h incubation). Subsequently, cells were fixed, permeabilized, and 
click-labeled. As a negative control, untreated cells were used. Following incubation, 
fluorescence readout was determined using a FACS LSRII (Becton Dickinson, Breda, 
The Netherlands) to determine percentages of EdU-proliferative cells in S and M phase 
and EdU-negative quiescent cells in G0 and G1 phase. The experiment was performed 
in triplicate and repeated twice (n = 2).

Proteasome activity labeling

Proteasome subunits were labeled in the lysate with 0.5 μm   activity-based probe 
BODIPY-epoxomicin for 1 h at 37 °C (BodipyFl-Ahx3L3VS, MV121, provided by 
H. Overkleeft,   Institute of Chemistry, Leiden, The Netherlands)112 and sample buffer 
(350 mM Tris-HCl pH 6.8, 10% SDS, 30% glycerol, 6% b-mercaptoethanol, 0.02 % 
bromophenol blue), added to 20 µg protein lysate. Samples were boiled for 5 min and 
loaded on a 12.5% SDS-PAGE gel. As a positive control, maximal proteasome activity 
was determined after treatment with IFNγ (50 U). After running the proteins on the 
gel, fluorescence imaging was performed on a Trio Typhoon (GE Medical Systems, 
Little Chalfont, UK) using the 580 bandpass filter to detect the probe directly on the 
gel. Proteasome total activity values were normalized according to the total proteasome 
content in cells as indicated by the levels of the α7 subunit of the 20S proteasome (1:1000; 
MCP72; Enzo Life Sciences, Zandhoven, Belgium). The experiment was performed in 
triplicate and repeated three times (n = 3).



Western blot analysis

Proteins were isolated using a 1% Triton X-100 cell lysis buffer (10 mM Hepes, 150 mM 
NaCl, 10% glycerol, 1.5 mM MgCl2, 1 mM EGTA, 1% Triton X-100 and 1x Complete 
Protease Inhibitors; Roche Biochemicals, Almere, The Netherlands). All samples were 
run on SDS-PAGE under denaturing conditions. Briefly, 20 mg of protein was loaded on a 
12.5% SDS-PAGE gel, and after electrophoresis transferred to nitrocellulose membranes 
using a Trans-Blot Turbo Transfer System (Bio-Rad). Membranes were incubated 
overnight or longer at 4°C with a monoclonal antibody against the α7 subunit of the 
20S proteasome (1:1000; BML-PW8110-0025, Enzo Life Sciences) and the following 
polyclonal antibodies: anti-β5 subunit (1:1000; BML-PW8895-0100; Enzo Life Sciences) 
and anti-β5i subunit (1:1000; ab3329; Abcam, Cambridge, UK). Anti β-actin (1:10,000; 
a5441; Sigma-Aldrich, St. Louis, MI, USA) was determined for the loading control. 
Intensity of bands was quantified by densitometric analysis using Odyssey (LI-COR 
Biosciences, Lincoln, NE, USA). Quantification was performed with Image studio Lite 
4.0 (LI-COR). Values were normalized using β-actin (1:10,000; ab8227; Abcam). The 
experiment was performed in triplicate and repeated three times (n = 3).

RNA isolation and mRNA quantification 

Total RNA was isolated from ARPE-19 cell cultures using TRIzol reagent (Invitrogen) 
according to the manufacturer’s instructions. ARPE-19 cells were stimulated with TGFβ 
(5 ng, 30 ng or 50 ng for 24 h), CTGF (50 ng or 200 ng for 24 h), epoxomicin (50 nM, 100 
nM, 250 nM, 500 nM for 16 h) and IFNγ (50 U for 72 h) in 6-well plates. In addition, in 
order to assess whether epoxomicin treatment was able to counteract TGFβ-mediated 
responses, TGFβ-stimulated ARPE-19 cells were treated with 500 nM epoxomicin. 
Total RNA (1 µg) was treated with DNAse I (amplification grade;  Life Technologies) 
and reverse transcribed into first strand cDNA using a Maxima® First Strand cDNA 
Synthesis Kit (Thermo Scientific, Roskilde, Denmark).  Real-time qPCR was performed 
using a CFX96 system (Bio-Rad) as described previously.62   Primer details are given in 
Table 1. Ct-values were converted to absolute amounts with the formula 2-Ct and taken 
relative to the absolute amounts of control samples, that were set to 1.  The experiment 
was performed in triplicate and repeated three times (n = 3).
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Enzyme-linked immunosorbent assay (ELISA)

ARPE-19 cell samples treated with epoxomicin (50 nM, 100 nM, 250 nM, 500 nM 
for 16 h) and supernatant was collected. Concentrations of activated TGFβ2 were 
determined by Quantikine ELISA assays according to the manufacturer’s protocol 
(R&D Systems, Minneapolis MS, USA). The experiment was performed in triplicate 
and repeated twice (n = 2).

Statistical analysis

Data are presented as fold change, with a fold change of 1.0 meaning the same level as 
control samples. Asterisks (*) indicate a significant change relative to the control samples. 
Differences between experimental conditions were calculated with one-way or two-way 
ANOVA with P < 0.05 indicating a statistical difference. Statistical analysis of data was 
performed using IBM SPSS 20 (SPSS, Chicago, IL, USA).

Results
TGFβ and epoxomicin arrest cell cycle progression

CTGF (50 and 200 ng for 24 h), TGFβ (5 and 50 ng for 24 h) and epoxomicin (50 and 
500 nM for 16 h) did not induce any significant cytotoxicity in ARPE-19 cells (data not 
shown). TGFβ significantly reduced cell proliferation (35-37% cell cycle arrest in G0/
G1 phase corresponding to a 20% increase when compared to control), whereas CTGF 
did not show an anti-proliferative effect (Fig. 1). On the other hand, epoxomicin, a cell-
permeable potent and selective irreversible proteasome inhibitor,79 strongly arrested cell 
cycle progression (Fig. 1). These results suggest that epoxomicin has significant anti-
proliferative effects in ARPE-19 cells. 



Fig. 1. Proliferation of ARPE-19 cells in the presence of TGFβ, CTGF, TGFβ 
and CTGF or epoxomicin expressed as percentage of cells in the S and M phase versus 
cells in the G0 and G1 phase after flow cytometric analysis of the percentage of cells that 
had incorporated EdU. *Significant difference from control of percentage of cells in G0 
and G1 phase. #Significant difference from control of percentage of cells in the S and M 
phase. The experiment was performed in triplicate and repeated twice (n = 2).

CTGF and TGFβ affect proteasome subunit mRNA levels

As expected, treatment with high doses of epoxomicin significantly decreased mRNA 
levels of PA28Α and β5i (data not shown), whereas IFNγ increased mRNA levels of 
a7 and b5 (Fig. 2). CTGF marginally increased mRNA expression of subunit β5 (Fig. 
2). Upon TGFβ stimulation, mRNA levels of the immunoproteasome subunit β5i and 
proteasome regulatory subunit PA28Α were decreased. 
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Fig. 2. Proteasome mRNA levels induced by IFNγ, TGFβ or CTGF. 
mRNA levels of PA28α, β5, β5i, and α7 subunits of the proteasome in ARPE-19 cells, 
after stimulation with IFNγ, TGFβ and low and high concentrations of CTGF. IFNγ 
upregulates mRNA expression of α7 and β5 subunits whereas TGFβ downregulates 
mRNA expression of PA28α and β5i subunits and CTGF upregulates mRNA expression 
of β5 subunit. Values represent mRNA expression levels (mean ± SD) relative to untreated 
control cells. *, Significant change (P < 0.05); ***, significant change (P < 0.001). The 
experiment was performed in triplicate (n = 3).

CTGF increases the β5i/β5 ratio 

To assess whether the induced changes in expression of proteasome-associated genes 
was associated with increased protein expression levels of the respective subunits, we 
performed western blotting on ARPE-19 cells treated with CTGF (50 ng), TGFβ (50 ng), 
a combination of CTGF and TGFβ, and IFNγ as positive control (Fig. 3). The ratio of β5i 
and β5 (b5i/β5) was taken as a marker of immunoproteasome activation. As expected, 
IFNγ induced maximal immunoproteasome activation, as indicated by a 28-fold change 
in the β5i/β5 ratio (data not shown).  Protein levels of β5i were slightly higher in the 
presence of CTGF (Fig. 3A,B) which translated in a 19% increased β5i/β5 ratio (Fig. 
3C), whereas TGFβ stimulation downregulated the expression level of the proteasome 
β5i subunit by 33% (Fig. 3A,B), whereas the β5i/β5 ratio was not significantly affected 
(Fig. 3C). 
These results indicate that, to a limited extent, expression of immunoproteasome β5i 
subunit protein is upregulated by CTGF and downregulated by TGFβ. 



Fig. 3. Proteasome-specific subunit protein expression and β5i:b5 ratios upon 
IFNγ, CTGF, TGFβ or CTGF and TGFβ stimulation of ARPE-19 cells. (A) Western 
blot showing protein levels of β5i, α7 and actin (loading control) in cells that had been 
incubated with IFNγ, CTGF or TGFβ. (B) Protein levels of β5 and β5i subunits were 
assessed by western blot with actin as loading control and α7 subunit as proteasome 
content control. (C) Quantitative data of the average ratio of β5i and β5 relative to 
control samples after incubation in the presence or absence of CTGF, TGFβ or CTGF 
and TGFβ. Data are expressed as the mean ± SD. *, Significant change (P < 0.05): **, 
significant change (P < 0.01). The experiment was performed in triplicate (n = 3).

 
 
CTGF upregulates proteasome activity in ARPE-19 cells 

To assess whether proteasome gene expression and protein level changes induced by 
CTGF and TGFβ affect proteolytic activity of the proteasome, the activity of individual 
subunits after treatment of cells with CTGF, TGFβ or IFNγ was determined (Fig. 4). 
IFNγ, as expected, induced a substantial increase (4 to 5-fold change, P = 0.049) in 
activity of all subunits. CTGF (50 ng) significantly upregulated the activity of the β1/β5i 
complex (2.6-fold change, P =0.005) and β5/β1i complex (1.5-fold change, P = 0.026). 
TGFβ (30 ng) did not affect proteasomal activity, whereas a combination of CTGF (50 
ng) and 6 h later TGFβ (5 ng) did not induce changes in the activity of the β1/β5i and 
β5/β1i complexes. 
These results demonstrate that CTGF upregulates the activity of specific proteasome 
subunits, probably mediated by a change in the configuration of the standard 
proteasome into the immunoproteasome and up-regulation in mRNA and protein levels 
of proteasome β5 and β5i subunits.
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Fig. 4. Increased specific proteasome activity upon CTGF stimulation of 
ARPE-19 cells. (A) After treatment with IFNγ (50 U), TGFβ (50 ng), CTGF (50 ng) or 
CTGF (50 ng) followed 6 h later by TGFβ (5 ng), ARPE-19 cells were harvested and 
proteasomes were labeled with a Bodipy-Ep activity probe. Proteasome activities were 
assessed by western blotting. Quantitative data of the proteasome activity are presented 
for proteasome subunit β2 (B), β1/β5i complex (C), and β5:β1i complex (D). *, Significant 
change (P < 0.05); **, significant change (P < 0.01). The experiment was performed in 
triplicate (n = 3).

TGFβ upregulates mRNA levels of ECM-associated genes

In order to characterize the effects of TGFβ and CTGF on the transcription of ECM-
associated genes, we assessed the mRNA levels of CTGF, TGFβ1 and TGFβ2, VEGF, 
fibronectin (FN), fibronectin EDA domain (FN EDA), metalloproteinase-2 (MMP-2), 
tissue inhibitor of metalloproteinases-1 (TIMP-1) and peroxisome proliferator-associated 
receptor-γ (PPARγ) upon stimulation with CTGF, TGFβ, and CTGF followed by TGFβ 
(Fig. 5). 
TGFβ upregulated mRNA levels of CTGF and VEGF (. 5A). The same effect was 
observed when ARPE-19 cells were treated with CTGF followed by TGFβ (data not 
shown). This effect was dependent on the concentration of TGFβ, which implies that 
TGFβ may be the main mediator of this response in ARPE-19 cells.
With respect to fibrosis-related genes, TGFβ, but not CTGF, upregulated mRNA levels 
of FN EDA, FN and MMP-2 (Fig. 5B). Transcript levels of the anti-fibrogenic factor 
PPARγ were downregulated in the presence of TGFβ (Fig. 5B). Again, these effects were 
dependent on the concentration of TGFβ, irrespective of simultaneous treatment with 
different concentrations of CTGF (data not shown). These results confirm the role of 
TGFβ as a major pro-fibrogenic mediator in RPE cells.  



Fig. 5. TGFβ upregulates mRNA expression of CTGF, VEGF and pro-
fibrogenic genes and downregulates mRNA expression of the anti-fibrogenic factor 
PPARγ. After stimulation with TGFβ, CTGF and IFNγ, mRNA levels of (A) CTGF, 
TGFβ1, TGFβ2, VEGF and (B) FN, FN EDA, MMP-2, TIMP-1 and PPARγ were 
assessed in ARPE-19 cells. Values represent mRNA expression levels (mean ± SD) relative 
to untreated control cells. *, Significant change (P < 0.05); **, significant change (P < 
0.01); ***, significant change (P < 0.001). The experiment was performed in triplicate (n 
= 3).

Proteasome inhibition by epoxomicin downregulates  
expression of ECM-associated genes 

In order to test the effects of proteasome modulation on mRNA expression of CTGF, 
TGFβ1, TGFβ2, VEGF, FN, FN EDA, TIMP-1, MMP-2 and the anti-fibrogenic protein 
PPARγ, we assessed the effects of different concentrations of epoxomicin and TGFβ plus 
epoxomicin (Fig. 6).
Treatment of ARPE-19 cells with epoxomicin resulted in decreased mRNA levels of 
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TGFβ1 and TGFβ2 (Fig. 6A). Mean levels of activated TGFβ2 protein were strongly 
reduced (to undetected levels when compared to untreated cells) after treatment of ARPE-
19 cells with 50-500 nM epoxomicin (data not shown). At low concentrations (50 and 
100 nM), epoxomicin downregulated VEGF mRNA expression (Fig. 6A). Furthermore, 
treatment with epoxomicin resulted in decreased mRNA levels of FN, FN EDA, TIMP-
1 and a corresponding increase in MMP-2 mRNA levels (Fig. 6B). Down-regulation of 
mRNA expression of TGFβ1, TGFβ2, FN EDA and VEGF with 500 nM epoxomicin 
was also observed in TGFβ-treated ARPE-19 cells. In addition, epoxomicin, alone or 
in the presence of TGFβ, downregulated the expression of the anti-fibrogenic mediator 
PPARγ (Fig. 6B). These results suggest that epoxomicin, even upon TGFβ secretion, 
counteracts the pro-fibrogenic transcription effects of TGFβ. 

Fig. 6. Epoxomicin (Ep) downregulates mRNA expression of TGFβ1, 
TGFβ2, VEGF, FN, FN EDA, TIMP-1 and upregulates mRNA expression of CTGF 
and PPARγ. In the presence of TGFβ, epoxomicin dowregulates mRNA expression of 
TGFβ1, TGFβ2, VEGF and FN EDA and expression of PPARγ is upregulated.  After 
treatment with increasing concentrations of epoxomicin in untreated and TGFβ-treated 
ARPE-19 cells, mRNA levels of (A) CTGF, TGFβ1, TGFβ2, VEGF, (B) FN, FN EDA, 
MMP-2, TIMP-1 and PPARγ were assessed. Values represent mRNA expression levels 
(mean ± SD) relative to untreated control cells. *, Significant change (P < 0.05); **, 
significant change (P < 0.01); ***, significant change (P < 0.001). The experiment was 
performed in triplicate (n = 3).



Discussion

This study attributes a role to the proteasome pathway in modulation of part of the 
fibrogenic response of RPE cells which is a multifactorial response dependent on 
activation and suppression of a myriad of growth factors and cytokines. For the purpose 
of this study, we selected TGFβ and CTGF as both are regarded as important mediators 
of pathological fibrosis in the eye and other organs.4; 7; 9; 14; 16; 26; 42; 45; 46; 47; 59; 61; 63; 67; 69; 70; 71; 72; 

73; 77; 84; 85; 90; 94; 106; 108; 109; 115; 119; 120 Likewise, emerging evidence suggests a link between the 
fibrogenic response, proteasome modulation and TGFβ signaling in multiple systemic 
conditions.6; 35; 44; 50; 66; 83; 97; 116; 122; 123; 125 
Routine passaging of ARPE-19 cells was used as an in vitro wound response model 
to study the fibrogenic response in the retina. Epithelial cells (such as the RPE in the 
retina) are considered to be the major mediators of fibrogenic responses to tissue injury.73; 

98 The RPE is a highly polarized monolayer of epithelial pigmented cells between the 
choroid and the neurosensory retina that plays a crucial role in the maintenance of visual 
function.102 RPE cells proliferate and undergo epithelial-mesenchymal transition (EMT) 
when dissociated into single cells,43; 103 whereas sheets of RPE cells in culture preserve 
their morphology for a longer period of time.23; 56 Disorganization and extensive damage 
to the RPE such as during subretinal CNV membrane formation, is a prerequisite 
for development of subretinal fibrosis.55 Accordingly, subretinal fibrosis is frequently 
reported in late stages of nAMD.10; 21 Fibrosis in other organs such as lung, kidney, liver, 
skin and heart follows pathogenic pathways similar to subretinal fibrosis development 
in nAMD.36; 98 In all these tissues, an intact epithelium is considered protective against 
fibrosis development.37 Although the ARPE-19 cell line was deemed appropriate for 
the purpose of this study, confirmation of the attained results in an in vivo model is 
warranted. Our study is focused on the fibrogenic response of RPE cells, however, we 
acknowledge that RPE cells are only one of many other cell types involved in RPE-
mediated fibrosis. 
Our results demonstrate that CTGF is associated with activation of the proteasome as 
demonstrated by the increased proteolytic activity of specific proteasome complexes, 
namely β1/β5i and β5/b1i. The proteasome activity probe assay is unable to discriminate 
between the activities of the various proteasome subunits. Nevertheless, it is likely 
that the observed changes in proteasome activity stem from β5 and β5i increased 
proteolytic activity since these are known to be the rate-limiting subunits at the level 
of the RPE.57; 78 Accordingly, these changes in proteasome activity are accompanied by 
a slight but significant up-regulation in β5 and β5i protein expression and β5 mRNA 
levels. Conversely, TGFβ was associated with a down-regulation of β5i and proteasome 
regulatory subunit PA28Α mRNA levels. Association of PA28Α with the 20S catalytic 
core has been shown to increase proteasome activity.25; 33; 91 Studies have shown that 
expression of PA28Α tends to decline in aged retina.29 Unlike the effects of CTGF, 
proteasome activity assays in the presence of TGFβ demonstrated no changes in the 
proteolytic activity of specific proteasome subunit complexes. Recent evidence has 
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suggested that the immunoproteasome, besides its role in immune surveillance, may be 
considered as a rescue mechanism in response to cellular stress.22; 29; 32; 33; 34; 38; 41; 51; 52; 53; 99 
Correspondingly, immunoproteasome activation has been demonstrated in the RPE of 
a mouse model of age-related atrophic degeneration of the RPE22 as well as in the retina 
of AMD human donors.29    
There is converging evidence for TGFβ as an important pro-fibrogenic factor in the RPE. 
RPE cells from CNV membranes are strongly immunoreactive for TGFβ2 and the RPE 
has been shown to be an intraocular secretion site of TGFβ.104 Elevated mRNA levels of 
TGFβ (TGFβ2 isoform) have been demonstrated in the RPE-choroid complex and retina 
of AMD patients86 and in the vitreous of patients with proliferative vitreoretinopathy and 
proliferative diabetic retinopathy.17; 61 TGFβ can induce EMT of RPE cells in suspension, 
but fails to do so when RPE cells have well-established cell-cell contacts.103 Earlier studies 
have confirmed that TGFβ is an inducer of a number of growth factors such as CTGF, 
platelet-derived growth factor, fibroblast growth factors, and VEGF, as well as TGFβ 
itself.48; 110 Likewise, in the presence of a TGFβ signaling inhibitor (A-83-01), RPE cells 
were more tolerant to continuous wound response triggers (such as routine passaging of 
cell cultures) and retained the capacity to acquire a pigmented epithelial morphology.90 
In addition, inhibition of TGFβ signaling did not prevent RPE differentiation or RPE-
mediated wound repair.90 Semaphorin 3A, a TGFβ inhibitor, suppressed laser-induced 
CNV formation in mice by inhibition of the Smad2/3 signaling pathway.8 These and our 
results suggest that TGFβ may be regarded as a fibrogenic marker in disrupted RPE cells 
and that targeting of TGFβ-mediated effects may improve wound repair mechanisms. 
Our results demonstrate that inhibition of the proteasome by epoxomicin is associated 
with down-regulation of the expression of TGFβ (both isoforms TGFβ1 and TGFβ2) 
and a complete blockage of TGFβ2 activity. These two isoforms were studied because in 
vivo roles and expression of the different TGFβ isoforms may not be uniform, although 
in vitro experiments often elicit similar responses.96

CTGF expression is regulated by several signaling mechanisms including pathways of 
TGFβ/Smad.74 TGFβ is a major inducer of CTGF 42; 72 whereas CTGF has been shown 
to synergistically enhance the effects of TGFβ. Our results attribute an independent 
role for CTGF and TGFβ regarding modulation of the proteasome and fibrogenic 
response in RPE cells. When given consecutively, the effects of CTGF and TGFβ on 
proteasome expression and activity remained unchanged. Similarly, the pro-fibrogenic 
effects of TGFβ were not synergized by CTGF treatment. In other cell types, such as 
in hepatocytes, CTGF has been demonstrated to affect TGFβ signaling by facilitating 
binding of TGFβ to its receptor, down-regulation of the negative feedback loop via Smad7 
and inhibition of receptor binding and signaling of the physiological TGFβ antagonist 
BMP-7.42 Likewise, CTGF is considered to be a downstream mediator of certain effects 
attributed to TGFβ such as cell proliferation, migration, adhesion, ECM production 
and EMT.72 In the eye, CTGF has been shown to accumulate in basal deposits and in 
Bruch’s membrane of early AMD specimens.84 In accordance with our results, CTGF 
secretion has been shown to be linked to up-regulation of the expression of the ECM 



components FN, laminin and MMP-2 in ARPE-19 cells by mechanisms involving 
activation of ERK and p38 MAPK  signaling pathways.84 Furthermore, vitreous levels 
of CTGF correlated strongly with degree of fibrosis in vitreoretinal disorders such as 
proliferative vitreoretinopathy, proliferative diabetic retinopathy and macular hole.67 
Although expression of CTGF may occur independently of TGFβ in other retinal cell 
types, 107 our results suggest CTGF expression may be regulated by TGFβ-mediated 
pathways in RPE cells. In the presence of TGFβ, epoxomicin suppressed the strong up-
regulation induced by TGFβ on CTGF mRNA levels. Since the pro-fibrogenic effects 
of TGFβ were more significant than those of CTGF, targeting of the TGFβ pathway 
instead of CTGF may have a more substantial anti-fibrogenic effect in subretinal fibrosis. 
Potential anti-fibrogenic effects were demonstrated after simultaneous treatment of 
RPE cell cultures with anti-VEGF (bevacizumab) and a CTGF inhibitor, but not when 
the CTGF inhibitor was administered alone.7 Targeting the TGFβ pathway, however, 
could be less attractive due to concomitant inhibition of anti-inflammatory properties 
attributed to TGFβ alongside other important cellular effects.63 Epoxomicin is one of the 
most selective inhibitors of the proteasome. Indeed, proteasomal subunits are the only 
cellular proteins covalently modified by the biotinylated derivatives of epoxomicin with 
no other proteolytic enzymes inhibited along this process.60 Treatment of RPE cells with 
epoxomicin downregulated the expression of the pro-fibrogenic ECM mRNA levels of 
FN and FN-EDA. In the presence of TGFβ, epoxomicin still downregulated mRNA 
expression of FN EDA, VEGF, TGFβ1 and TGFβ2. FN, a glycoprotein that mediates 
cellular adhesion and migration of RPE cells, is one of the components of the ECM that 
is expressed in early phases of fibrosis.12 FN is composed of two cross-linked subunits. 
Alternative splicing of the FN gene transcript results in several variants. One isoform 
(FN-EDA) has an extra domain in cellular FN.111 Expression of FN-EDA is significantly 
increased in specific stages of embryonic development, during wound healing processes 
in the adult and in several fibrogenic diseases.59 
Furthermore, epoxomicin led to a shift in the balance between MMP-2 and TIMP-1, 
as mRNA levels of MMP-2 were upregulated and TIMP-1 levels were downregulated. 
As demonstrated in other cell lines,27 TGFβ increased MMP-2 levels without affecting 
mRNA levels of TIMP-1. RPE cells are known to express MMP-2 and TIMP-1,1; 3 MMPs 
are involved in a number of normal and physiological responses such as degradation 
of the basal lamina, remodeling of ECM, connective tissue turnover,  angiogenesis and 
wound repair mechanisms.27 TIMPs are the natural inhibitors of the functional effects 
of MMPs.11 TIMPs have been shown to suppress angiogenesis and promote fibrosis by 
inhibiting the degradation and processing of ECM proteins.54 TIMP-1, in particular, 
has a pivotal role in the fibrogenic response.54 In vitreous samples of patients afflicted 
with proliferative diabetic retinopathy, TIMP-1 and MMP-2 were shown to be involved 
in angiogenesis, with TIMP-1 possibly acting as a natural anti-angiogenic factor.106 
Moreover, the balance between MMPs and TIMPs may be important for the integrity 
of ECM components, including, amongst others, collagens, vitronectin, fibronectin, 
laminin, elastin, and proteoglycans, and as such it may be regarded as indicative of 
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the initiation and progression of the fibrogenic response.55; 81 The observed changes 
in the MMP/TIMP-1 balance by epoxomicin may result in improved breakdown of 
ECM components and subsequent attenuation of RPE cells’ migration and fibrogenic 
responses. On the other hand, these effects on the MMP/TIMP ratio might be transitory, 
as evidenced in a previous study in which TGFβ inhibition had a late inhibitory effect on 
MMP-2 mRNA levels.6 
The mechanism(s) by which proteasome inhibition protects against fibrosis remain 
unknown. Our results suggest that PPARγ modulation, alongside inhibition of TGFβ 
expression, may explain the anti-fibrogenic properties of epoxomicin. PPARγ, a member 
of the nuclear receptor superfamily, is a ligand-activated transcription factor known to 
be involved in various distinct physiological processes including fat cell differentiation, 
glucose homeostasis, lipid metabolism, aging and inflammatory and immune 
responses.95; 105 Furthermore, PPARγ possesses important anti-angiogenic and anti-
fibrogenic properties and is involved in the oxidative stress response.124  In the retina, 
PPARγ has been shown to be involved in multiple molecular processes, including VEGF-
induced choroidal angiogenesis response,82 photoreceptor renewal process,28 retinal 
neuroprotection 126 and protection from oxidative stress.88; 89 Degradation of PPARγ has 
been reported to occur via the proteasome.80 Inhibition of TGFβ signaling by PPARγ has 
been attributed to restriction of Smad 2,3 binding to TGFβ-responsive promoters.35 After 
phosphorylation, Smad2,3 forms a complex with other Smad proteins, which in turn 
facilitate translocation to the nucleus. In the nucleus, coactivators or repressors (such as 
PPARγ) regulate the binding of the Smad complex with DNA.116 Our results demonstrate 
inhibition of the proteasome was able to counteract TGFβ-mediated down-regulation of 
PPARγ, an effect also demonstrated in other cell types.80 Proteasome inhibitors may also 
impair late TGFβ-mediated responses by up-regulation of transcriptional corepressors 
such as Ski novel gene N and cellular Ski.116



Fig. 7. A role for proteasome inhibition in the modulation of fibrogenic 
mechanisms mediated by RPE cells. TGFβ activates multiple pathways, including the 
Smad, Rho-like GTPase, PI3K/AKT and MAPK pathways, resulting in the transcription 
of several pro-fibrogenic genes such as CTGF, FN, FN EDA, VEGF and down-
regulation of PPARγ transcription. These effects contribute to epithelial-mesenchymal 
transition processes in RPE cells and initiation of fibrosis. Proteasome inhibition halts 
cell cycle progression and downregulates transcription of FN, FN EDA, TGFβ, VEGF 
and TIMP-1 whilst transcription of the anti-fibrogenic factor PPARγ is upregulated, also 
upon exposure to TGFβ. Effects of proteasome inhibition are depicted as dotted lines. 
Abbreviations: connective tissue growth factor (CTGF); fibronectin (FN); fibronectin 
EDA (FN EDA); MAP kinase pathway (MAPK); phosphatidylinositol-3-kinase pathway 
(PI3K/AKT); retinal pigment epithelial cells (RPE); Rho-like GTPase pathway (RhoA/
ROCK); tissue inhibitor metalloproteinase-1 (TIMP-1); transforming growth factor 
β (TGFβ); transforming growth factor receptor (TGFR); vascular endothelial growth 
factor (VEGF). 
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Proteasome inhibition as a means to suppress pathological fibrogenic and proliferative 
responses has been proposed in various experimental studies. Proteasome inhibitors have 
been found to inhibit proliferation and induce apoptosis in renal interstitial fibroblasts,125 
prevent development of experimental dermal fibrosis,66 attenuate diabetic nephropathy50 
and prevent hepatic fibrosis.15 In Fig. 7 we propose a RPE-mediated fibrosis model and 
the signaling pathways affected by proteasome inhibition in the RPE. 
In summary, we highlight specific fibrogenic and proliferative responses of RPE cells to 
proteasomal inhibition and propose mechanisms by which proteasomal inhibition may 
regulate TGFβ expression and signaling. Accordingly, the anti-fibrogenic properties of 
proteasome inhibitors may have a therapeutic role in RPE-mediated fibrosis. Further in 
vivo studies are required to elucidate the clinical value of these findings.  
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Abstract

Curcumin has multiple biological effects including modulation of  protein homeostasis 
by the ubiquitin-proteasome system. The purpose of  this study was to assess the in vitro 
cytotoxic and oxidative effects of  nano-curcumin and standard curcumin and characterize 
their effects on proteasome regulation in retinal pigment epithelial (RPE) cells. 
Viability, cell cycle progression and reactive oxygen species (ROS) production were 
determined after treatment with nano-curcumin or curcumin. Subsequently, the effects of  
nano-curcumin and curcumin on proteasome activity and the gene and protein expression 
of  proteasome subunits PA28α, α7, β5 and β5i were assessed.
Nano-curcumin (5 – 100 µM) did not show significant cytotoxicity or anti-oxidative effects 
against H2O2-induced oxidative stress, whereas curcumin (≥ 10 µM) was cytotoxic and a 
potent inducer of  ROS production. Both nano-curcumin and curcumin induced changes 
in proteasome-mediated proteolytic activity characterized by increased activity of  the 
proteasome subunits β2 and β5i/β1 and reduced activity of  the β5/β1i proteasome 
subunits. Likewise, nano-curcumin and curcumin affected mRNA and protein levels of  
household and immunoproteasome subunits.
Our results demonstrate that nano-curcumin is less toxic to RPE cells and less prone to 
induce ROS production when compared to curcumin. Both nano-curcumin and curcumin 
increase proteasome-mediated proteolytic activity. These results suggest that nano-
curcumin may be regarded as a proteasome-modulating agent of  limited cytotoxicity for 
RPE cells. 

Introduction

Curcumin [1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione] is the orange 
and water-insoluble pigment extract of  turmeric, the rhizome of  Curcuma longa. The 
therapeutic potential of  curcumin is currently being tested in several clinical trials after 
promising preliminary observations.52 In ophthalmology, curcumin has been proposed 
as a potential therapeutic strategy for several conditions including dry eye syndrome,10 
diabetic retinopathy,23; 63 diabetic retinal neurodegeneration,35 age-related macular 
degeneration (AMD),39 retinitis pigmentosa59; 67 and light and oxidative stress-induced 
retinal neurodegeneration.42 On the other hand studies have warned of  potential toxic 
effects of  curcumin in RPE cells1; 27; 64 and retinal endothelial cells.53 
One of  the major obstacles precluding implementation of  curcumin as a  therapeutic 
agent lies in its poor bioavailability in organs and tissues other than the gastrointestinal 
tract when given orally.3 At present, various curcumin formulations with improved 
bioavailability, including nanoparticles as drug delivery systems, are being assessed.69 
However, these different formulations do not have comparable biological properties.49 
Recently, a highly absorptive curcumin dispersed with polysaccharide nanoparticles 
(Theracurmin® or nano-curcumin) has been developed. The oral absorption efficacy of  



nano-curcumin is approximately 40-fold higher than that of  curcumin in both rats and 
humans58 which implies that this specific formulation is taken up by epithelial cells of  the 
gastrointestinal tract and reaches blood levels that are deemed sufficient for bioactivity.46; 47 
The ubiquitin-proteasome system (UPS), a multicatalytic cytoplasmic and nuclear protein 
complex present in all eukaryotic cells, is responsible for nonlysosomal proteolysis.11 
Intracellular proteins are tagged for proteolysis after binding of  ubiquitin moieties. These 
are then recognized by the 19S regulatory particle of  the proteasome which in combination 
with the 20S catalytic core forms the household or ‘classical’ proteasome.55 Within the 
proteasome core, 3 different specialized catalytic subunits are responsible for proteolytic 
cleavage of  the carboxyl end of  proteins: β1 for acidic amino acids (caspase-like), β2 for 
basic amino acids (trypsin-like) and β5 for hydrophobic amino acids (chymotrypsin-like). 
In response to stress and injury, the household proteasome changes its configuration into 
the so-called immunoproteasome which is formed upon replacement of  the constitutive 
subunits by inducible subunits, β1i, β2i, and β5i.13; 34 Therefore, the ratio between the 
household (β1, β2, and β5) and inducible subunits (β1i, β2i, and β5i) is a marker of  
cellular stress.21; 28; 29 
Curcumin has been shown to modulate proteasome function by different mechanisms. 
First, the carbonyl carbons of  curcumin interact with the hydroxyl group of  the amino-
terminal threonine residue of  the β5 subunit which results in suppression of  the protease 
activity of  the proteasome and in particular that of  the chymotrypsin-like (b5) subunit.45 
Second, curcumin inhibits COP9 signalosome (CSN) kinase activity.26; 66 CSN is a 
protein complex that controls the stability of  many proteins such as ligases60 and 
possesses structural similarities with multiple non-ATPase subunits of  the 19S lid of  the 
proteasome.25 The ligases interact with specific ubiquitin-conjugating enzymes in the 
ubiquitination of  substrates and as such, CSN functions as an interface between signal 
transduction and ubiquitin-dependent proteolysis.6 Third, curcumin has been shown to 
inhibit ubiquitin isopeptidases, a family of  cysteine proteases (deubiquitinases) responsible 
for the re-utilization of  ubiquitin by the 26S proteasome.22; 45; 50 Curcumin contains an 
a,b-unsaturated ketone and 2 sterically accessible b-carbons that mediate inhibition of  
these enzymes.25 
A steadily increasing number of  clinical trials are investigating the potential therapeutic 
effects of  curcumin and other curcuminoid formulations. Yet, recent reports of  curcumin-
mediated retinal cytotoxicity1; 27; 53; 64 could imply that chronic intake of  curcumin 
negatively affects retinal function. The aims of  the present study are: 1) to assess and 
characterize cytotoxic and oxidative effects of  nano-curcumin and standard curcumin in 
RPE cells in vitro; and 2) to investigate the in vitro effects of  nano-curcumin and standard 
curcumin on proteasome expression and activity in RPE cells so to ascertain whether 
nano-curcumin and/or standard curcumin can be used as proteasome-modulating agents 
in retinal disorders. 
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Methods
Culture, maintenance and treatment of ARPE-19 cells 

Experiments were conducted using ARPE-19 cells, a human RPE cell line that has 
structural and functional properties that are characteristic of  RPE cells in vivo. Cells were 
cultured at 37°C in 5% CO2 in gelatin-coated T75 cell culture flasks (Corning, Lowell, MA, 
USA) in Dulbecco Modified Eagle Medium (DMEM; Gibco Life Technologies, Carlsbad, 
CA, USA), low glucose, pyruvate in the presence of  1% penicillin/streptomycin and 10% 
fetal calf  serum. Cell growth was monitored and medium was changed twice a week. 
For passaging of  cells, TrypLE Express (Invitrogen, Carlsbad, CA, USA) was added for 
trypsinization of  the cells and cell suspensions were diluted 3-fold. For experiments, cells 
were cultured in 6-well plates. Upon confluence, cells were washed once with phosphate-
buffered saline (PBS) and were serum starved for 24 h and then treated with different 
concentrations of  nano-curcumin (Theracurmin®, kindly provided by Dr. C. Tamura, 
Theravalues, Tokyo, Japan) and curcumin (kindly provided by Dr. E. Kemper, Academic 
Medical Center, Amsterdam, The Netherlands). Both nano-curcumin and standard 
curcumin were dissolved in sterile water.

Protein extraction 

Cells were harvested using TrypLE Express (Invitrogen), collected in Eppendorf  tubes and 
centrifuged for 10 min at 400 g. Supernatant was removed and the pellet was suspended 
in TSDG buffer (10 mM Tris, pH 7.5, 25 mM KCl, 10 mM NaCl, 1.1 mM MgCl2, 0.1 
mM EDTA, and 8% glycerol), 5 mM ATP and 1x protease inhibitor (Roche Applied 
Science, Penzberg, Germany).  
Cells were lysed by 3 cycles of  freezing in liquid nitrogen and thawing at room temp. 
After centrifugation (15 min; 10,000 g), protein concentrations were determined using a 
Bradford protein assay (Serva, Heidelberg, Germany). 

Cytoxicity assays of ARPE-19 cells treated with nano-curcumin or 
curcumin 

To assess the viability of  untreated ARPE-19 cells and possible toxic effects of  nano-
curcumin and curcumin, the PrestoBlue cytotoxicity assay (Invitrogen) was performed 
according to the manufacturer’s instructions. A resazurin-based compound is converted 
to its reduced form in intact mitochondria of  viable cells which causes a shift in its color 
and fluorescence which can be quantified fluorometrically or spectrophotometrically. The 
assay was also used to test whether nano-curcumin or curcumin (incubated for 3 h at 
concentrations of  20 µM) affect cytotoxicity of  0 – 1000 µM hydrogen peroxide (H2O2) 
in ARPE-19 cells.



The assays were carried out in 96-well plates (10,000-25,000 cells per well). After cell 
adherence and subsequent washing, PrestoBlue reagent was added to each well. The 
plates were then incubated at 37  °C for 20-30 min. After incubation, the solution 
containing PrestoBlue was transferred from the wells of  the assay plates to new wells in a 
96-well plate, and absorbance was read on a plate reader (Bio-Rad, Hercules, CA) with 
the excitation and emission wavelengths set at 570 and 600 nm, respectively. 

Cell cycle progression analysis of ARPE-19 cells treated  
with nano-curcumin or curcumin 

In order to evaluate the effects of  nano-curcumin and curcumin on cell proliferation, 
the Click-iT EdU Alexa Fluor 488 imaging kit (Invitrogen) was applied according to the 
protocol provided by the manufacturer. Briefly, ARPE-19 cells at 30-50% confluence were 
incubated for 24 h with EdU (5-ethynyl-2’-deoxyuridine). EdU, an analog of  thymidine, is 
incorporated into newly synthesized DNA and subsequently recognized by azide dyes via 
a copper-mediated (“click”) reaction. As a negative control, untreated cells were assessed 
and fluorescence per cell was detected using a FACS LSRII cell sorter (Becton Dickinson, 
Breda, The Netherlands).

Analysis of reactive oxygen species production of ARPE-19 cells 
treated with nano-curcumin or curcumin

Production of  ROS in ARPE-19 cells in the presence or absence of  nano-curcumin 
or curcumin (5 or 50 µM) was determined by a FACS-based ROS detection kit (Enzo 
Life Sciences, Plymouth Meeting, PA, USA) using a modified protocol 24. Untreated 
and unstained cells were used alongside a positive control with a ROS inducer (200 µM 
pyocyanine) and a negative control with a ROS inhibitor (5 mM N-acetyl-L-cysteine). 
ARPE-19 cells incubated with nano-curcumin or curcumin were also treated with 250 µM 
H2O2. After staining for 30 min, fluorescence per cell in the green channel was detected 
using a FACS LSRII. 

Measurement of activity of proteasome subunit complexes after 
treatment of RPE cells with nano-curcumin or curcumin

We investigated the potential role of  nano-curcumin and curcumin as proteasome-
modulating agents in RPE cells. Proteasome catalytic subunits b2, β5i/b1 and β5/
β1i were labeled in lysates of  ARPE-19 cells treated with nano-curcumin or curcumin 
(5, 50 or 100 µM) with a 0.5 μM activity-based probe BODIPY-epoxomicin for 1 h at 
37°C (BodipyFl-Ahx3L3VS, MV121, provided by Prof. Dr. H. Overkleeft, Institute of  
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Chemistry, Leiden, The Netherlands)68 Sample buffer (350 mM Tris-HCl pH 6.8, 10% 
SDS, 30% glycerol, 6% b-mercaptoethanol, 0.02 % bromophenol blue) was added to 20 
µg protein lysate. The samples were boiled for 5 min and loaded on a 12.5% SDS-PAGE 
gel. After running the proteins on the gel, fluorescence imaging was performed using a 
Trio Typhoon (GE Medical Systems, Little Chalfont, UK) and a 580 bandpass filter to 
detect the probe directly on the gel. Proteasome total activity values were normalized 
on the basis of  the total proteasome content in cells as indicated by the levels of  the α7 
subunit of  the 20S proteasome (1:1000; MCP72; Enzo Life Sciences). 

Western blot analysis of isolated RPE proteasome subunits after 
treatment with nano-curcumin or curcumin

Western blot analysis was performed as described previously.57 After treatment with nano-
curcumin or curcumin (5, 10, 20 or 50 µM at 24 h and 50 µM at 48 h), 20 mg of  RPE cell 
protein was loaded on a 12.5% SDS-PAGE gel, and, after electrophoresis, transferred to 
nitrocellulose membranes and semi-quantitatively analyzed. Membranes were incubated 
overnight or longer at 4°C in the presence of  either a monoclonal antibody against the 
α7 subunit of  the 20S proteasome (1:1000; BML-PW8110-0025; Enzo Life Sciences) 
or one of  the following polyclonal antibodies: anti-β5 subunit of  the 20S proteasome 
(1:1000; BML-PW8895-0100; Enzo Life Sciences) or anti-β5i subunit of  the 20S 
proteasome (1:1000; ab3329; Abcam, Cambridge, UK). Anti-b-actin (1:10000; a5441; 
Sigma-Aldrich, St. Louis, MO, USA) was used as loading control. Intensity of  bands was 
quantified by absorbance measurements using Odyssey (LI-COR Biosciences, Lincoln, 
NE, USA). Quantification was performed with Image studio Lite 4.0 (LI-COR). Values 
were normalized using β-actin (1:10,000; ab8227; Abcam).

RNA isolation and quantification of RPE mRNA after treatment with 
nano-curcumin or curcumin

Real-time quantitative PCR experiments were performed to detect mRNA expression 
of  proteasome regulatory subunit PA28Α (PSME), α7 (PSMA7), β5 (PSMB5) and β5i 
(PSMB8) proteasome subunits. Total RNA was isolated from ARPE-19 cell cultures 
(6 samples per experimental condition) according to the manufacturer’s instructions 
(TRIzol; Invitrogen) after incubation with low (10 µM) and high (50 µM) concentrations 
of  nano-curcumin and curcumin. 
Total RNA (1 µg) was treated with DNAse I (amplification grade;  Life Technologies) 
and reverse transcribed into first strand cDNA using a Maxima® First Strand cDNA 
Synthesis Kit (Thermo Scientific, Roskilde, Denmark). Real-time qPCR was performed 
using a CFX96 system (Bio-Rad) as described previously.33  Primer details are presented in 



Table 1. The specificity of  the primers was confirmed by NCBI BLAST. The presence of  
a single PCR product was verified by both the presence of  a single melting temperature 
peak and detection of  a single band of  the expected size on 3% agarose gel. Non-template 
controls were included to verify the method and the specificity of  the primers. Ct values 
were converted to arbitrary absolute amounts (2-Ct x 1E12).

Gene GenBank Forward primer Reverse Primer Size (bp) Tm (°C)

PSME1 NM_006263 CAGCCCCATGTGGGTGATTATC GCTTCTCGAAGTTCTTCAGGATGAT 139 82

PSMA7 NM_002792 CCTGGAAGGCCAATGCCATAG TTTGCCACCTGACTGAACCACTTC 149 82

PSMB5 NM_002797 CCATGATCTGTGGCTGGGATAAG GGTCATAGGAATAGCCCCGATC 144 83

PSMB8 NM_004159 CTGGAGGCGTTGTCAATATGTACC GCAGCAGGTCACTGACATCTGTAC 81 76

Table 1. Primer details. Gene nomenclature, GenBank accession code, primer sequences, 
predicted size and melting temperature (Tm) of  the amplified product.

 Statistical analysis 

Data are presented as fold change, with a fold change of  1.0 meaning the same level as 
control samples. Asterisks (*) indicate a significant change relative to the control samples. 
Differences between experimental conditions were calculated with one-way or two-way 
ANOVA with P < 0.05 indicating a statistical difference. Statistical analysis of  data was 
performed using IBM SPSS 20 (SPSS, Chicago, IL, USA).

Results
Nano-curcumin is not cytotoxic for ARPE-19 cells, unlike curcumin, 
and does not protect against oxidative stress-mediated cell death 

We found no significant cytotoxicity in ARPE-19 cells exposed to 5 – 100 µM of  nano-
curcumin, whereas exposure to 20 – 100 µM curcumin induced significant cytotoxic 
effects (Fig. 1a). Hardly any viable cells were found after incubation in the presence 
of  50 – 100 µM curcumin (Fig. 1a). Next, we assessed whether nano-curcumin or 
curcumin prevented cytotoxic effects of  125 – 1000 µM  H2O2. The highest non-lethal 
concentration of  curcumin (20 µM) was selected and compared to a similar concentration 
of  nano-curcumin. As expected, exposure to H2O2 caused dose-dependent cytotoxicity 
in ARPE-19 cells (Fig. 1b). Pretreatment with 20 µM curcumin increased cytotoxicity of  
RPE cells when exposed to 125 µM H2O2, contrary to nano-curcumin which showed 
a mild protective effect (P = 0.04). This effect subsided upon higher concentrations of  
H2O2 (Fig. 1b). 
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Curcumin (15 µM) treatment of  RPE cells was previously shown to arrest cell cycle 
progression with arrest in the G1 phase.64 Cell cycle progression of  ARPE-19 cells exposed 
to 0 – 50 µM nano-curcumin did not show significant changes in cell proliferation (Fig. 2). 

Fig. 1. Effects of  nano-curcumin and curcumin on cell viability. Viability assays 
of  ARPE-19 cells exposed to 0-100 μM nano-curcumin (NCu) or standard curcumin 
(Cu) in the presence of  0-1000 μM H2O2. (a) Concentration-dependent effects of  nano-
curcumin and curcumin on ARPE-19 cell viability expressed as corrected absorbance. 
(b) Cytotoxicity effects of  0 - 1000 μM H2O2 on ARPE-19 cells after pretreatment or not 
with nano-curcumin or curcumin (20 μM for 3 h) and expressed as mean percentage of  
viable cells ± standard deviation (SD) when compared to untreated cells (0.1% DMSO). 
*, Significant change (P < 0.05).



Fig. 2. Effects of  nano-curcumin on cell proliferation. Cell proliferation 
assay of  ARPE-19 cells in the presence of  0-50 μM nano-curcumin (NCu) expressed as 
percentage of  cells in the G0, G1 and S phase after flow cytometric analysis of  fluorescence 
of  incorporated EdU. (a) Contour plot of  cells treated with 0, 5, 10 and 50 μM nano-
curcumin. (b) Percentages of  cells in the different cell phases. Con: control, untreated. No 
significant differences were found. 

Nano-curcumin is a mild ROS inducer  
and curcumin is a potent ROS inducer in ARPE-19 cells

ROS cause damage to cells and extracellular matrix.7 Because of  the high retinal 
consumption of  oxygen, the retina may be particularly susceptible to oxidative damage. 
Accordingly, oxidative stress has been linked to several senile degenerative diseases of  the 
retina, including AMD.5; 17; 72 
We determined the percentage of  ROS-producing cells in the presence of  5 or 50 µM 
nano-curcumin or curcumin and assessed whether the oxidative effects of  nano-curcumin 
differed from those of  standard curcumin. We demonstrated strong ROS-inducing effects 
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in cells treated with both low and high concentrations of  curcumin, comparable to the 
pro-oxidative effects of  pyocyanin which was used as a positive control (Fig. 3). These 
effects may explain the dose-dependent cytotoxic effects of  curcumin as shown in Fig. 1. 
Low concentrations of  nano-curcumin (5 µM) did not induce significant ROS production, 
with ROS levels that were comparable to those obtained in unstained untreated cells. 
High doses of  nano-curcumin (50 µM) induced significant ROS production. These results 
attribute significant pro-oxidative effects to curcumin whereas low concentrations of  
nano-curcumin do not lead to significant ROS production in RPE cells. 

Fig 3. Effects of  nano-curcumin and curcumin on ROS production. 
Detection of  ROS production in ARPE-19 cells treated with low (5 μM) and high (50 
μM) concentrations of  nano-curcumin (NCu) or curcumin (Cu). Cells were also treated 
with 200 µM pyocyanin (general ROS inducer, positive control) and 5 mM N-acetyl-L-
cysteine (general ROS inhibitor, negative control). Cells were stained with ROS-ID™ 
Total ROS Detection Reagent and analyzed using flow cytometry. Untreated cells were 
used as a control. Cell debris was ungated. The cells with increased levels of  oxidative 
stress demonstrate bright green fluorescence in the presence of  the ROS detection 
solution. (a) Histogram plots showing cells incubated in the presence of  pyocyanin 
(positive control), N-acetyl-L-cysteine (negative control), nano-curcumin and curcumin. 
Bright green fluorescence depicting increased ROS production (as observed in the positive 
control) is demonstrated in cells incubated with 50 μM nano-curcumin and 5 and 50 μM 
curcumin. (b) Percentage of  cells actively producing ROS as compared to untreated cells, 
incubated with pyocyanin, H2O2, N-acetyl-L-cysteine, nano-curcumin and curcumin. All 
3 independent experiments were carried out in triplicate. Py: pyocyanin; NAC: N-acetyl-
L-cysteine; ROS: reactive oxygen species. *, Significant change (P < 0.05).



Nano-curcumin and curcumin affect the proteolytic activity of 
proteasome catalytic subunits β2, β5i/β1 and β5/β1i 

In order to assess whether nano-curcumin and curcumin affect the proteolytic activity of  
individual proteasome subunits, a proteasome activity-based probe assay was conducted. 
At present, available proteasome activity probes are unable to distinguish β1 and β5 
from their inducible counterparts β1i and β5i because the subunits run identically in 
gels (Fig. 4a). Nano-curcumin, at low concentrations (5 µM) downregulates activity of  
the β5/β1i proteasome catalytic subunits (0.57 fold-change, P = 0.0009). Intermediate 
(10 µM) and high (50 µM) concentrations of  nano-curcumin upregulate activity of  the 
β2 (1.27 fold-change, P = 0.03 and 1.55 fold-change, P = 0.0005, respectively) and β5i/
β1 proteasome catalytic subunits (1.46 fold-change, P = 0.01 and 1.54 fold-change, P = 
0.04, respectively). Intermediate (10 µM) and high (50 µM) concentrations of  curcumin 
downregulate activity of  the β5/β1i proteasome catalytic subunits (0.89 fold-change, P 
= 0.009 and 0.92 fold-change, P = 0.015, respectively). Similar to the effects observed 
with nano-curcumin, high (50 µM) concentrations of  curcumin upregulate activity of  
the β2 and β5i/β1 proteasome catalytic subunits (1.55 fold-change, P = 0.002 and 1.40 
fold-change, P = 0.035, respectively) (Fig. 4b). These results suggest that nano-curcumin 
and curcumin have dose-dependent effects on proteasome-mediated proteolytic activity.
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Fig. 4. Effects of  nano-curcumin and curcumin on proteasome activity. 
Proteasome activity labeling in ARPE-19 cell lysates. (a) After treatment with 0 - 50 μM 
nano-curcumin (Ncu) or curcumin (Cu), ARPE19 cells were harvested and proteasomes 
were labeled with a proteasome activity probe. Activity of  the β2, β1/β5i and β5/β1i 
proteasome catalytic subunits was determined by fluorescence imaging. (b) Data are 
expressed as mean proteolytic activity per subunit complex ± SD, normalized on the 
basis of  the total proteasome content in cells as indicated by the levels of  proteasome a7 
subunit. *, Significant change (P < 0.05); **, (P < 0.01); ***, (P < 0.001).

Nano-curcumin induces a mild activation of the immunoproteasome

Protein levels of  proteasome subunits β5, β5i and α7 were assessed after treatment with 
various concentrations of  nano-curcumin and curcumin. The ratio between β5i and β5 
was calculated at two time-points as a marker of  immunoproteasome activation. Protein 
levels of  the α7 subunit of  the 20S proteasome depict the total pool of  proteasomes in 
cells. Nano-curcumin (50 µM and 20 µM) increased protein levels of  proteasome subunits 
β5i (mean 1.6 fold-change, P = 0.01, data not shown) resulting in an increased β5i/β5 
ratio when compared to unstimulated and curcumin-treated RPE cells (Fig. 5a). This effect 
is both concentration and time-dependent, as shown in Fig. 5b which demonstrates that 
at 48 h, the increase in β5i/β5 ratio is overturned. Neither nano-curcumin or curcumin 
had a significant effect on the protein levels of  the proteasome α7 subunits (Fig. 5c). These 
results suggest nano-curcumin may induce a mild activation of  the immunoproteasome.



Fig 5. Effects of  nano-curcumin and curcumin on proteasome protein 
expression. Protein levels of  proteasome subunits β5, β5i and α7 were assessed by western 
blot with actin expression as loading control after incubation of  ARPE-19 cells with 0-50 
μM nano-curcumin (NCu) and curcumin (Cu) at 24 h (β5, β5i and α7) and 48 h (β5 
and β5i). (a) β5i/β5 ratio fold-change at 24 h induced by 0-50 μM nano-curcumin and 
curcumin, corrected for actin and relative to control samples. (c) Time-dependent effects 
in the β5i/β5 ratio fold-change induced by nano-curcumin at 24 and 48 h, corrected for 
actin and relative to control samples. (c) Protein levels of  proteasome subunit α7 induced 
by 0-50 μM nano-curcumin and curcumin, corrected for actin and relative to control 
samples. Data are expressed as the mean ± SD. *, Significant change (P < 0.05).

Nano-curcumin and curcumin affect the transcription of 
proteasome-related genes

In order to assess whether nano-curcumin affected the transcription of  proteasome-
related genes, qPCR of  ARPE-19 cells treated for 72 h with 10 and 50 µM nano-curcumin 
and curcumin was performed. Fig. 6 shows that 10 µM nano-curcumin increased gene 
expression of  proteasome α7 subunit (1.56 fold-change, P = 0.03), β5 subunit (1.18 fold-
change, P = 0.004) and b5i subunit (1.11 fold-change, P = 0.04). Ten µM curcumin 
increased gene expression of  proteasome PA28Α subunit (1.12 fold-change, P = 0.01) 
and β5i subunit (1.10 fold-change, P = 0.04). Higher concentrations of  curcumin (50 
µM) strongly reduced gene expression of  all proteasome-related genes (P < 0.001). These 
results show that nano-curcumin and curcumin have concentration-dependent effects on 
the transcription of  proteasome-related genes. 
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Fig 6. Expression of  proteasome-related genes after exposure to nano-
curcumin and curcumin. mRNA levels of  proteasome subunits PA28α, α7, β5 and β5i 
after 72 h treatment with nano-curcumin and curcumin (0, 10, 50 μM). mRNA expression 
levels of  α7 are increased upon stimulation with 10 μM nano-curcumin, and mRNA levels 
of  β5 and β5i is increased upon stimulation with 10 μM and 50 μM nano-curcumin. 
Treatment with 10 μM curcumin increased PA28α and β5i mRNA levels. Higher 
concentrations of  curcumin (50 μM) significantly decreased mRNA levels of  PA28α, α7 
and β5i. Values represent mRNA expression levels ± SD relative to untreated control 
cells. *, Significant change (P < 0.05); **, (P < 0.01); ***, (P < 0.001).

Discussion

The results of  the present study support the pleiotropic properties of  curcumin and its 
various formulations. A consensus regarding the effects of  curcumin in the retina is yet 
to be reached. In this study, it was demonstrated that nano-curcumin induces changes in 
proteasome modulation with limited cytotoxic effects at low concentrations, suggesting 
that this specific formulation is a safe alternative for the retina and RPE. While some 
studies praise the beneficial effects of  curcumin and its potential use in ophthalmic disease, 
others advocate retinal function ought to be monitored during the intake of  curcumin. 
Such contradictory findings may be explained by the hormetic properties attributed 
to curcumin, i.e., toxic at high doses but able to exert adaptive stress responses at low 
doses.43; 44 In addition, certain biological effects of  curcuminoids may depend on the 
specific formulation of  curcumin used.30; 49 For instance, the number of  methoxy groups 
dictates the anti-oxidative potency of  curcumin,31 whereas the presence of  phospholipids 
in curcumin formulations affect its biological activity.12 Therefore, the use of  different 
curcuminoid formulations may lead to contradictory results.   



Our study demonstrates significant cytotoxic effects of  standard curcumin in RPE cells 
at concentrations higher than 20 µM. These findings are in accordance with the data 
of  previous studies in which curcumin exhibited pro-apoptotic effects in RPE cells at 
concentrations ~20 µM.1; 27 These concentrations are in the same concentration range that 
is supposed to be effective in cancer cells.9; 48; 54; 56; 62 On the other hand, nano-curcumin, 
a formulation of  curcumin dispersed with polysaccharide nanoparticles, shows no major 
cytotoxicity in RPE cells. The differences in cytotoxicity between these two formulations 
may be explained by the smaller size and increased solubility of  nano-curcumin compared 
to curcumin. Curcumin, hardly soluble in water, forms particles that are larger than 20 
µM in diameter in aqueous solutions whereas the average diameter of  nano-curcumin 
in aqueous solutions is 100 times smaller (0.2 µM).58 Furthermore, nano-curcumin is 
more stable due to the formation of  an amorphous state upon hydrogen bonding.70 This 
suggests that monitoring of  retinal toxicity is not required during concomitant intake of  
nano-curcumin, this may not hold true for standard curcumin. 
The uptake of  nano-curcumin in RPE cells was not investigated in this study, however, 
other studies provide evidence that RPE cells, similar to other cell lines, take up nano-
curcumin. Epithelial cells of  the gastrointestinal tract of  rat and human in vivo  absorb 
nano-curcumin over 40 times more efficiently when compared to standard curcumin47; 58 
and nano-curcumin has been shown to be taken up by esophageal cancer cells and non-
cancer cells in vitro.46 
Our findings suggest that curcumin-mediated cytotoxicity may be partly caused by 
increased ROS production. Contrary to curcumin, low concentrations of  nano-curcumin 
(5 µM) do not induce ROS production in non-oxidative conditions and have significant 
less pro-oxidative effects when compared to curcumin. Higher concentrations of  nano-
curcumin, however, significantly induce ROS production. These results are in accordance 
with data from previous studies with other cell lines in which curcumin was shown to 
possess rapid ROS-inducing effects.4; 8; 65 In contrast, other in vitro ARPE-19 cell studies 
attribute anti-oxidative properties to curcumin in aging and H2O2-mediated oxidative 
stress.71; 73 According to our findings, and taking into account both the conflicting and 
supportive results reported in other studies, it appears that curcumin exhibits both pro- 
and anti-oxidative properties. Differences in experimental setup, such as concentration 
and stimulation time may partly explain the contradictory findings. 
Recent evidence shows that dysfunction of  the UPS may contribute to the pathogenesis 
of  several eye diseases16; 18; 19; 20; 21; 29; 32; 38; 41 Modulation of  this pathway remains, however, 
an unexplored therapeutic target in retinal degenerative diseases. Curcumin has been 
reported to affect proteasome activity and expression in a biphasic dose-dependent 
manner.25 Low concentrations of  curcumin were found to upregulate proteasome activity 
whereas high concentrations of  curcumin inhibited proteasome activity.25 Chymotrypsin-
like activity was increased by 46% after treatment of  human keratinocytes with curcumin 
(up to 1 µM for 24 h) whereas higher concentrations of  curcumin were inhibitory. At 10 
µM, proteasome activity decreased to 46% of  its initial value.2 A possible explanation 
for this biphasic mechanism could be the fact that curcumin is both pro-oxidative and 
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anti-oxidative. Mild or transient oxidative stress upregulates proteasome activity and 
transiently enhances intracellular proteolysis whereas severe or continuous oxidative stress 
impairs proteasome function and decreases intracellular proteolysis.61 
Our study demonstrates that both nano-curcumin and curcumin exert concentration-
dependent changes in the activity of  proteasome individual subunits in RPE in vitro. A 
recently developed activity-based probe assay was used instead of  the more commonly 
used ubiquitin-independent fluorogenic peptides and ubiquitin-dependent fluorescent 
reporters. Activity-based probes can detect alterations in proteasomal activity in gels 
and can also be applied to visualize active proteasomes in living cells.36; 37; 40 Unlike 
fluorescence-labeled tags, activity-based probes label only completely assembled and 
active proteasome complexes which may explain why results obtained with these two 
different methods are incomparable and at times inconsistent. Overall, activity of  the β2 
and β5i/b1 proteasome catalytic subunits is upregulated with increasing concentrations 
of  nano-curcumin and curcumin whilst activity of  the β5/β1i proteasome catalytic 
subunits is downregulated after treatment of  RPE cells with both nano-curcumin and 
curcumin. Short-term treatment of  cells with high concentrations of  both nano-curcumin 
and curcumin induces expression of  β5i subunits which translates in a higher number of  
β5i subunits when compared to β5 subunits, i.e., the household proteasome undergoes 
a change in configuration with activation of  the immunoproteasome. This effect is not 
explained by an increase in the number of  proteasomes as the protein expression levels 
of  the α7 subunit remain unchanged after nano-curcumin and curcumin treatment. The 
pool of  proteasome subunits is replenished after treatment with low concentrations of  
nano-curcumin, as demonstrated by the increased mRNA expression of  a7, β5 and β5i 
proteasome subunits. Of  note, the effects on mRNA expression observed after treatment 
with 50 µM curcumin, namely downregulation of  the transcription of  all proteasome-
related genes, possibly reflect the potent cytotoxic effects at similar concentrations. 
The pro-oxidative state induced by high concentrations of  nano-curcumin and curcumin 
may explain the changes found in proteasome activity, and gene and protein expression. 
Indeed, oxidative stress has been shown to affect proteasome function.15; 51  Notably, in 
the RPE, the activity of  β5 is the rate-limiting step of  proteasome activity.11; 41; 45 Changes 
due to nano-curcumin treatment approximate those in other conditions that have been 
shown to be associated with β5 proteasome activity inhibition, namely ageing32 and 
complement overactivation.14 Changes in the ratio between immunoproteasome and 
classic proteasome are indicative of  cellular stress, inflammation and oxidative stress.14; 

18; 21; 28; 29 It has been suggested that a continuous expression of  the immunoproteasome 
in the retina is protective against neuronal stress and promotes repair mechanisms.21 A 
possible mechanism for the inactivation of  the β5 subunit lies in the chemical structure 
of  curcumin, via inhibition of  the ubiquitin isopeptidase activity located at the 19S 
regulatory subunit of  the 26S proteasome. Curcumin belongs to a class of  compounds 
with α,β-unsaturated ketones and two sterically accessible β carbons.50 Furthermore, 
curcumin has been shown to bind directly to the 20S proteasome.45 A recent study has 
confirmed that both carbonyl groups of  curcumin are indeed susceptible to nucleophilic 



attack by N-terminal threonine of  the β5 chymotrypsin-like subunit of  the proteasome 
thereby inhibiting its proteolytic activity.45 
The formulation of  curcumin, duration of  culture and concentration used may account for 
the contradictory results described hitherto in several studies. It appears that the cytotoxic 
profile of  each formulation of  curcumin depends on its bioavailability, absorption and 
cellular uptake. Further in vivo studies are required to assess the molecular effects of  
supplementation of  curcumin in relation to retinal function. It is not known whether 
systemic administration of  curcumin reaches the RPE and the neurosensory retina at 
concentrations capable of  inducing significant molecular effects. If  so, our findings suggest 
that curcumin may promote the development of  RPE and retinal dysfunction which in 
turn can accelerate development of  age-related retinal diseases. On the other hand, our 
results show that two different formulations of  curcumin show different biological effects. 
Nano-curcumin may be a safer alternative in clinical trials in the future. Finally, our 
results attribute significant proteasome-modulating properties to both nano-curcumin and 
curcumin. The changes in proteasome activity incurred after nano-curcumin treatment 
are characterized by an activation of  the immunoproteasome with consequent changes in 
the protein and gene expression of  proteasome-related subunits. 
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Abstract

Purtscher-like retinopathy, a rare manifestation of  systemic thrombotic microangiopathy, 
is a potentially visually debilitating condition with no effective proven treatment. Distinct 
pathogenic pathways have been proposed as etiological factors. In this short review of  the 
literature, we revisit the etiology of  Purtscher-like retinopathy based on the rapid response 
and profound visual acuity improvement achieved after initiation of  systemic intravenous 
eculizumab, an inhibitor of  the complement cascade, in a patient with Purtscher-like 
retinopathy secondary to familial atypical hemolytic uremic syndrome (aHUS) due to 
a mutation in complement factor H. We hypothesize the efficacy of  eculizumab in this 
patient provides evidence for pathogenic events in the retina similar to those encountered 
in the renal microvasculature of  aHUS patients, namely complement-mediated 
thromboembolization as a result of  activation of  the complement cascade in endothelial 
cells with release of  tissue factor and development and amplification of  a procoagulant 
state. To the best of  our knowledge, this is the first report in the literature of  eculizumab 
as an effective therapeutic strategy in Purtscher-like retinopathy.

Introduction

Purtscher and Purtscher-like retinopathy is a rare, often bilateral, retinal occlusive 
microvasculopathy that occurs as a result of  various clinical entities associated with 
vascular thromboembolic occlusion. The designation Purtscher retinopathy refers to cases 
associated with a traumatic etiology, whereas Purtscher-like retinopathy occurs secondary 
to non-traumatic causes.1

Several mechanisms have been brought forward as hypothetical triggers of  Purtscher 
and Purtscher-like retinopathy.1; 2; 3 Although the pathogenesis is likely multifactorial and 
differs according to the underlying predisposing condition, embolization of  the retinal 



microcirculation has been proposed as the common pathogenic ground for the retinal 
findings.4; 5; 6; 7  Potential sources of  toxic and/or obstructive emboli include air, fat, fibrin, 
platelet and leukocyte aggregates.1 Other infrequent causes include emboli arising from 
orbital steroid injection,8 after retrobulbar anesthesia8; 9; 10; 11 and after childbirth due to 
amniotic fluid embolism.12 Uncontrolled complement activation with the formation of  
C5-9 membrane attack complex and the anaphylatoxin C5a has also been proposed 
to play a major role in the pathogenesis of  Purtscher-like retinopathy by mechanisms 
involving endothelial damage and activation of  the clotting cascade5; 6; 13; 14 and 
development of  leukocyte and platelet aggregates1; 4. The size of  the leukocyte aggregates 
(~50 to 80 µm) is greater than the diameter of  precapillary arterioles (45 µm) which may 
then result in occlusion of  the retinal microcirculation.15 Clinical evidence supports a role 
for complement-mediated vascular thromboembolic occlusion, as a large proportion of  
patients show evidence of  low serum complement, a marker for complement activation.16 
Other proposed mechanisms include intravascular volume surge such as in sudden 
expansion of  retinal veins,1 hyperviscosity,17 intracephalic shock waves such as in sudden 
increase in intracranial pressure with resulting precapillary occlusion at the level of  the 
lamina cribrosa,18 capillary endothelial damage19 and vascular endothelial dysregulation 
and ensuing endothelin-induced vasculopathy.18 In sum, regardless of  the causative factor, 
Purtscher-like retinopathy may be regarded as a multifactorial downstream occlusive 
thromboembolic retinopathy, which in a large proportion of  cases may be mediated 
by uncontrolled complement activation. Associated systemic entities include acute 
pancreatitis,20; 21; 22; 23; 24; 25; 26; 27 pancreatic adenocarcinoma,28 systemic lupus erythematosus,16 
renal failure,29; 30 amniotic fluid embolization,12 thrombotic thrombocytopenic purpura,31; 

32; 33; 34 hemolytic uremic syndrome,32; 35 and cryoglobulinemia.36; 37; 38 In specific disorders, 
the diagnosis of  Purtscher-like retinopathy accompanies multisystem organ failure and 
therefore portends a poor prognosis.39

The clinical diagnosis of  Purtscher and Purtscher-like retinopathy is suggested by a 
sudden visual loss of  variable severity, hours to days after the associated etiology. Some 
patients may be asymptomatic (or not able to report symptoms because of  their serious 
general condition) which likely results in underreporting.4 The majority of  patients (83 – 
92%) show funduscopic evidence of  retinal nerve fiber layer infarcts (cotton-wool spots) 
and intraretinal hemorrhages.1; 2 Purtscher “flecken” correspond to areas of   intraretinal 
whitening with a clear zone (within 50 µm) on either side of  the retinal arterioles, venules 
and precapillary arterioles. These lesions are the result of  precapillary arteriolar occlusion, 
and, though pathognomonic, can be identified in only 50% of  cases.2 Other less frequent 
findings include macular edema, optic disc swelling and a pseudo-cherry red spot. 
Fluorescein angiography shows evidence of  an occlusive thromboembolic retinopathy 
with areas of  retinal non-perfusion and leakage of  dye from retinal arterioles, capillaries, 
venules and optic disc.4

Although up to 40% cases may be associated with normalization of  all retinal findings and 
restoration of  good visual acuity, a significant number develop optic atrophy, mottling of  
the retinal pigment epithelial (RPE), retinal thinning and narrowing of  retinal arteries.4; 40 
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The prognosis for the individual patient is difficult to predict, due to the lack of  clear and 
validated predictors. Treatment strategies range from watchful waiting, plasmapheresis 
and use of  high doses of  systemic corticosteroids.2; 41; 42; 43  
Hemolytic uremic syndrome is characterized by non-immune hemolytic anemia, 
thrombocytopenia, and renal impairment. Most cases (90%) are secondary to infection 
with Shiga-toxin-producing bacteria as well as other bacteria, such as Streptococcus 
pneumoniae. Non-infectious causes, classified as atypical hemolytic uremic syndrome 
(aHUS), are linked to uncontrolled complement activation. The familiar type of  aHUS, 
as seen in this patient, has a particularly poor prognosis, with a reported mortality rate 
and  progression to end-stage disease  between 50 and 80%.44 Purtscher-like retinopathy 
has been reported to occur in a minority of  patients with hemolytic uremic syndrome.45; 

46; 47  
We present a case of  Purtscher-like retinopathy secondary to aHUS due to CFH mutation 
and resulting complement overactivation, successfully treated with systemic intravenous 
administration of  eculizumab (Soliris; Alexion Pharmaceuticals, Cheshire, CT, USA), 
an inhibitor of  terminal complement activation. We hypothesize that eculizumab may 
be an alternative therapeutic strategy for severe Purtscher-like retinopathy associated 
with complement dysregulated activation and ensuing thromboembolic occlusion of  the 
retinal microvasculature. Based on the response achieved after initiation of  treatment, an 
alternative etiology for Purtscher-like retinopathy is proposed after a short review of  the 
literature. 

Case description

A 20-year old Caucasian woman presented with complaints of  subacute painless loss of  
vision of  her left eye. She was referred to our clinic for intravitreal ganciclovir treatment 
after a putative diagnosis of  bilateral cytomegalovirus retinitis made by an ophthalmologist 
in her local hospital the day before. She was one of  three sisters known with familial 
aHUS due to a missense mutation (c.3572 C>T, Ser1191Leu) in exon 23 of  Complement 
Factor H (CFH gene). At six years of  age, she underwent bilateral nephrectomy followed 
one year later by a living-donor renal transplant. After one year, she developed a systemic 
cytomegalovirus infection with relapse of  aHUS. Her immunosuppression was tapered 
to a calcineurin free regimen and chronic maintenance plasmapheresis was started. 
Four years later, a transplant biopsy showed chronic allograft nephropathy with global 
glomerulosclerosis and tubular atrophy. There were no treatment options other than 
supportive care and her renal function slowly declined hereafter. At 19 years old she 
reached end-stage failure, immunosuppression was further tapered and she was started on 
dialysis. The maintenance plasmaphereses were halted. During dialysis she complained 
of  seeing “black spots” and was referred to the local ophthalmologist. Her family history 
included two sisters, one of  them her identical twin, with aHUS and CFH mutation. Her 
brother was an asymptomatic carrier for the CFH mutation, and her younger sister was 



not affected. She had no past history of  ocular illness. 
On ophthalmologic examination, best corrected visual acuity was 20/15 and 20/200-2 
in the right and left eyes, respectively. There was no relative afferent pupillary defect. 
Intraocular pressure was normal. The anterior chambers and vitreous were clear in 
both eyes. Fundus examination revealed nerve fiber layer infarcts and mild flame-shaped 
hemorrhages in both eyes. The left eye showed mild macular cystoid macular edema. 
The retinal vessels were of  a normal caliber in both eyes. A small choroidal naevus 
was present in the nasal retina of  the right eye. Fluorescein angiography revealed early 
hypofluorescence, areas of  non-perfusion, capillary obstruction and dropout, retinal 
ischemia in the parafoveal and perifoveal zone corresponding with the areas of  nerve 
fiber layer infarcts and perifoveal capillary leakage and staining in late frames. The left eye 
showed mild cystoid macular edema nasal to the fovea (Fig. 1). Mild peripapillary staining 
was noted in the late frames of  the left eye. Besides a small hemorrhage peripherally, all 
other angiographic findings were confined to the posterior pole, namely within the macula 
and immediately nasal to the optic disc. Normal fluorescein transit times were observed. 
The degree of  macular ischemia and perifoveal capillary dropout was more pronounced 
in the left eye which explained the visual acuity loss in that eye. These clinical findings, 
together with her medical history, were consistent with Purtscher-like retinopathy. At the 
time of  referral to our clinic, she was awaiting a second living-donor renal transplantation. 
The ophthalmic findings were evidence of  undertreated hemolytic uremic syndrome and 
uncontrolled systemic complement activation. In order to prevent further progression of  
her retinopathy, and due to the severe loss of  vision in her left eye, we started treatment 
with eculizumab, a C5 complement inhibitor that has been praised as highly effective 
in the treatment of  hemolytic uremic syndrome, also after transplantation. After four 
months, while being on chronic eculizumab therapy, a transplantectomy was performed 
followed by a second renal transplantation. Both procedures had an uncomplicated course.
On follow-up, she reported a steady continuous improvement of  her visual acuity. Five 
days after eculizumab administration, best corrected visual acuity was stable in her right 
eye and pinhole visual acuity improved to 20/50+2 in her left eye. Fundus examination 
revealed a decrease in the size of  the nerve fiber layer infarcts and optical coherence 
tomography showed total resolution of  the cystoid macular edema in the left eye. On the 
14th day after treatment, she reported total resolution of  all her previous visual complaints. 
Best corrected visual acuity was stable in her right eye and had improved to 20/15-2 in her 
left eye. Fundus examination revealed an improvement of  all clinical findings, including 
the nerve fiber layer infarcts, flame-shaped hemorrhages and macular edema. She was 
referred back to her local ophthalmologist. At 6 months, visual acuity remained stable and 
patient reported no visual complaints. 
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Fig. 1. Retinal photographs and fluorescein angiogram appearance at initial 
presentation. (A) Fundus appearance at presentation. Note the diffuse retinal nerve fiber 
layer infarcts, inner retinal ischemia and scattered retinal hemorrhages. Visual acuity 
was 20/15 and 20/200-2 in the right and left eye, respectively. (B) Mid-phase intravenous 
fluorescein angiogram of  the same patient at initial presentation. Note the parafoveal 
and perifoveal areas of  capillary obstruction and retinal ischemia correspondent to 
the areas of  inner retinal ischemia seen in the fundus picture. (C) Mid to late-phase 
fluorescein angiogram in the same patient. Note the parafoveal pericapillary leakage and 
mild macular edema with late leakage in the left eye. Angiographic findings were mostly 
confined to the macula and immediately nasal to the optic disc. 



Fig. 2. Optical coherence tomography findings at initial presentation and at 
day 6 and 15. Inner retinal ischemia was evident in both eyes, corresponding to the cotton-
wool spots demonstrated in the color photographs. The right eye, with normal visual 
acuity at presentation, had no evident macular edema. The left eye, with severe visual 
acuity loss, had mild cystoid macular edema which regressed rapidly after eculizumab 
administration. At day 15, visual acuity in the left eye had improved significantly alongside 
resolution of  the macular oedema and inner retinal ischemia.

Fig. 3. Retinal photographs and optical coherence tomography 18 months 
after initial presentation. Color photographs of  the right and left maculae show a normal 
appearance, albeit a significant thinning is evident on optical coherence tomography. The 
patient is asymptomatic and has normal visual acuity (20/15 in the right eye and 20/15-2 

in the left eye).
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Conclusion

This single case describes the favorable visual outcome achieved after systemic treatment 
with eculizumab in a patient with severe Purtscher-like retinopathy secondary to familiar 
aHUS and CFH mutation. 
In our view, the retinal findings were caused by uncontrolled systemic complement 
activation and as a result complement-mediated leukoembolization and/or complement 
activation of  the coagulation cascade in endothelial cells and secondary development of  
a prothrombotic state. Leukoembolization as a cause of  embolic retinal occlusion has 
been proposed as a potential pathogenic mechanism in Purtscher-like retinopathy.6; 15; 48 
However, recent experimental studies suggest endothelial activation of  the coagulation 
cascade by complement with formation of  microthrombi as the most plausible mechanism 
in the pathogenesis of  aHUS,49 and likewise, we propose this can be extrapolated not only 
to our case but to all cases of  complement-driven Purtscher-like retinopathy. As previously 
mentioned, the patient was known to carry a mutation in the CFH gene which codes for 
a serum protein that regulates the alternative pathway of  the complement system in the 
fluid phase as well as on host cell surfaces by binding through C3b and glycosaminoglycans 
via its C-terminal domain.50 Mutations in the CFH gene of  patients with aHUS are 
usually heterozygous in nature and cluster in C-terminal domain 19-20. This particular 
mutation, also found in this patient, results in normal levels of  a folded, abnormal protein, 
that is unable to bind and regulate complement on host cells and platelets. Animal studies 
have confirmed development of  aHUS with high C3 plasma levels in mice lacking the 
C-terminal end domain of  factor H.51 In contrast, complete CFH knockout mice develop 
a different renal disease pattern, namely membranoproliferative glomerulonephritis.52 
These studies support the evidence that the mutant CFH present in this patient fails to 
bind to and control complement activation on the glomerular endothelium, basement 
membrane, platelets and indirectly, the retinal endothelium, with subsequent development 
of  a procoagulant state that in turn resulted in aHUS and Purtscher-like retinopathy. 
Eculizumab is a monoclonal antibody directed against complement protein C5. It 
prevents activation of  the terminal complement cascade and the generation of  effector 
molecules C5a and C5b-9. The ability of  eculizumab to suppress complement activity in 
native and transplanted kidney has revolutionized the care of  patients with aHUS.53; 54; 55 
Without attenuation of  complement activity, either through plasmapheresis, kidney-liver 
transplant (CFH and other complement factors are produced in the liver), or recently 
eculizumab, disease recurrence occurs in approximately 80% of  CFH mutation carriers 
after renal transplantation since the isolated kidney allograft will not correct the underlying 
genetic defect.56

We hypothesize that complement inhibition by means of  eculizumab, is likely to have 
resulted in the rapid resolution of  clinical findings and dramatic restoration of  visual 
acuity in this patient. We consider it unlikely that an expectant management or other 
treatment options such as dosage increase of  systemic corticosteroids would have resulted 
in a similar outcome. We are, however, aware of  the limitation of  assuming efficacy based 



on results obtained with only one patient. Confirmation of  clinical efficacy requires 
validation from a larger clinical study. In this patient, plasmapheresis was considered as 
a possible treatment option; however, this would not have had an effect on complement 
activation which would have resulted in perpetuation of  renal and (possibly) retinal 
findings. Eculizumab was considered the most viable option as an attempt to prevent 
visual loss in the other eye and halt reactivation of  aHUS. In our opinion, increasing the 
dosage of  systemic corticosteroids was not a valid therapeutic strategy. The beneficial 
effects of  systemic corticosteroids in severe Purtscher-like retinopathy are inconsistent, 
with most studies confirming no differences in visual acuity improvement.1; 4 Interestingly, 
this patient developed Purtscher-like retinopathy whilst on systemic corticosteroids, albeit 
at a low dosage. It has been claimed that corticosteroids may lack efficiency in cases of  
Purtscher-like retinopathy primarily triggered by thrombotic microangiopathy, such as in 
aHUS.57 Solely targeting the inflammatory component will not affect microembolization 
since other complex pathogenic events such as hemostasis, thrombosis and complement 
dysregulation will remain unanswered.57 
Important clinical parameters support the favorable effect of  eculizumab in this particular 
patient. First, pronounced visual acuity improvement occurred rapidly after eculizumab 
treatment (20/200-2 visual acuity at time of  diagnosis improving to 20/15, 8 Snellen 
lines improvement, 14 days after initial examination). Evidence shows spontaneous 
visual improvement of  at least 2 Snellen lines is likely to occur in half  of  cases, however, 
such improvement occurs mostly in patients with better visual acuity at presentation.2  
Poor visual acuity at presentation, such as observed in this patient, is regarded as a poor 
prognostic sign for visual improvement. Furthermore, studies have shown that early 
resolution of  clinical findings is associated with better final visual outcomes.2 Secondly, 
this patient possessed other established poor prognostic criteria,4 namely female gender 
and intraretinal macular edema at presentation. Yet, visual acuity recovered dramatically 
after initiation of  treatment. At six months, she reported no visual symptoms and visual 
acuity was stable in both eyes. The drop in visual acuity in this and other patients with 
Purtscher retinopathy is likely secondary to macular edema.4 It has been hypothesized 
that the duration of  retinal changes is the most important parameter for full recovery 
of  vision and prevention of  secondary development of  retinal pigment epithelium and 
retinal nerve fiber layer atrophy with subsequent loss of  differentiation between retinal 
layers.58 Such findings are found in late-stage OCT examinations of  patients with 
Purtscher retinopathy with profound visual loss.58 Therefore, early reduction of  macular 
edema and other findings should be a priority in therapeutic management in order to 
prevent end-stage degenerative changes. We did not perform visual field examination 
in this patient. Central, paracentral, or arcuate scotomata with preservation of  the 
peripheral visual function have been reported in Purtscher retinopathy, also in cases in 
which macular edema and restoration of  visual acuity occurred.1; 59 Since the patient 
reported no complaints, we believed there were no clinical grounds requiring visual field 
testing. 
Mutations in complement-associated genes, and particularly in the CFH gene, have been 
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shown to be linked to development of  age-related macular degeneration (AMD), one of  
the leading causes of  blindness worldwide.60 Several mutations in complement-associated 
genes reported in patients with aHUS patients, such as Arg1210Cys in CFH, were found to 
confer a high risk of  AMD development. The relevance of  this shared genetic association 
between two distinct clinical phenotypes remains unknown. Retrospective analysis 
of  AMD databases did not reveal a higher incidence of  renal disorders in carriers of  
complement gene mutations known to cause both aHUS and AMD.61 On the other hand, 
patients afflicted with membranoproliferative glomerulonephritis type 2 (MPGN2), a 
renal disease that is also associated with CFH mutations, show AMD-like features. This 
suggests compound (genetic or environmental) factors may influence the final clinical 
outcome. Indeed, AMD and MPGN2 share a common pathogenic mechanism, i.e. the 
deposition of  complement-containing material beneath the retinal pigment epithelial 
in AMD and along the glomerular basement membrane in MPGN2.62 Disparately, the 
pathogenic mechanisms causative of  Purtscher-like retinopathy are shared with those of  
aHUS,  namely endothelial injury, activation of  the coagulation cascade, and ultimately 
thromboembolic microangiopathy.51 Moreover, some aHUS patients may carry multiple 
complement factor gene mutations, which could imply different cellular pathogenic 
mechanisms.63 Cross-phenotype studies are required in order to understand similarities 
and differences in complement-mediated pathogenic mechanisms of  both aHUS and 
AMD which could elucidate the effects of  eculizumab and other complement-modulating 
agents in the treatment of  AMD and other ophthalmic diseases. Recently, results of  a 
phase 2 study in which eculizumab was administered for 24 weeks to patients with dry 
AMD (COMPLETE study), aimed at halting progression of  geographic atrophy (GA), 
were published.64 The authors concluded eculizumab failed to arrest GA progression. 
It is likely that, although complement dysregulation is knowingly associated with 
AMD, pathogenesis and progression of  GA may occur independently of  complement 
overactivation.65 In our case report, complement overactivation likely had a direct effect 
as a facilitator and trigger of  the retinal thromboembolic microangiopathy, and therefore 
it is highly probable that local complement inhibition by systemic eculizumab enabled 
the rapid resolution of  the retinal microemboembolization with ensuing resolution of  
the macular intraretinal edema. These complement-mediated effects differ from those 
attributed to the complement pathway in diseases characterized by deposition of  
extracellular material such as AMD and MPGN2. Furthermore, complement inhibition 
has been demonstrated to occur within one hour after administration of  eculizumab.54 
Therefore, eculizumab may be more efficacious in suppressing acute complement-
mediated changes such as thromboembolic microangiopathy of  retinal and renal vessels, 
as opposed to chronic changes induced by uncontrolled complement activation such as 
in AMD. The authors of  the COMPLETE study argue that intravitreal administration of  
eculizumab might have resulted in a more favorable outcome. Our case provides indirect 
evidence that systemic eculizumab, at the administered dosage, does reach therapeutic 
concentrations at the level of  the choroid and is able to penetrate the RPE and retina. In 
addition, the dosing regimen used for treatment of  aHUS has been shown to reach drug 



complement-inhibiting concentrations in the peripheral blood.55

The description of  this case raises the possibility that eculizumab may be a valid 
therapeutic strategy in severe cases of  Purtscher-like retinopathy in which the primary 
pathogenic trigger is attributed to dysregulated complement activity. The benefit of  
intervention over expectant management can only be convincingly assessed with a 
randomized clinical trial, which, given the rarity of  the disease and the extreme high cost 
of  the drug (about US $350.000 per patient per year), is unlikely. The dramatic and rapid 
visual recovery demonstrated in this patient, even in the presence of  established poor 
prognostic signs, namely, poor visual acuity at presentation, intraretinal macular edema 
and female gender, provides convincing evidence that eculizumab was causally related to 
the attained superior outcome. To the best of  our knowledge, this is the first report in the 
literature of  eculizumab as a potential therapeutic strategy in Purtscher-like retinopathy. 
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Fig. 4. Proposed pathogenic mechanisms of  Purtscher-like retinopathy 
secondary to uncontrolled complement activation. The alternative pathway activates 
formation of  C3b by C3; C3b interacts with factor B which is subsequently cleaved by 
factor D to form the alternative pathway C3 convertase (C3bBb). This enzyme complex is 
covalently attached to the target covalently via C3b whilst Bb is the catalytic serine protease 
subunit. Factor H regulates the alternative pathway by preventing the interaction of  C3b 
with factor B, interacting with factor I-mediated cleavage of  C3b and dissociating the C3 
convertase of  the alternative pathway (not shown). Unchecked, the terminal complement 
pathway is then activated with release of  the complement anaphylatoxin C5a and formation 
of  the membrane attack complex (MAC). Eculizumab binds C5 which is then unable 
to enter the C5 convertase (C3bBbC3b), impeding cleavage into the effector molecules, 
C5a and C5b and assembly of  the terminal complement complex (C5b-9). This leads to 
exocytosis of  adhesion molecules [P-selectin (P-sel)] and von Willebrand factor (VWF) 
which in turn will lead to platelet adhesion and aggregation, expression of  tissue factor 
and activation of  the coagulation cascade. Cell detachment exposes the subendothelial 
matrix, facilitating binding of  VWF to collagen and subsequent amplification of  the 
coagulation state. Platelet aggregates release procoagulant microvesicles that contain 
tissue factor. Receptors for C3a and C5a [C3a receptor (C3aR) and C5a receptor (C5aR)] 
in polymorphonuclear leukocytes and monocytes, bind these anaphylatoxins enhance the 
release of  cytokines and eicosanoids contributing to an increase in vascular permeability, 
vasodilation, leukocyte extravasation and potentially formation of  leukocyte aggregates. 
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Abstract

Implementation of molecular imaging in ophthalmology relies on the availability of 
efficient imaging techniques that can detect and quantify chromophores to visualize 
molecular processes in vivo. We describe a 7-band retinal multispectral imaging (MSI) 
system and compare it with a hyperspectral imaging (HSI) device. Retinal oximetry 
studies were conducted as proof of principle.  
Both devices incorporate optical bandpass filters in a mydriatic fundus camera. The 
MSI system scans the retina at 7 pre-defined wavelengths between 450 and 620 nm 
at which the absorption spectrum of hemoglobin has unique features. The HSI system 
acquires a full scan from 480 to 720 nm by tuning the transmission of a liquid crystal-
based tunable filter over that wavelength range. The spectrally-resolved reflectance of 
light is then calculated for each individual pixel of the image. Two oximetry methods 
were used. The first calculates the absorbance ratio of oxygenated hemoglobin (HbO2) 
and reduced hemoglobin (HbR). The second method is based on a correction algorithm 
that compares the attained reflectance measurements with reflectance spectra of fully 
oxygenated and deoxygenated blood and allows an estimation of relative retinal oxygen 
saturation.  
The MSI device can be customized with pre-selected filter sets optimized for a 
chromophore of interest and thereby be used in future ophthalmic molecular imaging 
strategies. 

Introduction

Molecular imaging of spatiotemporal distribution of molecular and cellular processes in 
the retina, in vivo, depends on the development of imaging techniques such as retinal 
spectral imaging, broadly divided in hyperspectral imaging (HSI) or multispectral imaging 



(MSI). In HSI, acquisition of a dataset may be accomplished by different methods: 
point scanning (or whiskbroom), line scanning (or pushbroom) and area scanning (or 
staredown).12 In a point scanning system, a complete spectrum is acquired for each 
single pixel.  Light originating from one point enters the objective lens and is separated 
into different wavelengths by a spectrometer and detected by a linear array detector 
12. In a line scanning system, the spectra of all pixels in one image line are acquired 
simultaneously. The light is dispersed onto a 2D charge-coupled device (CCD) detector 
and a 2D data matrix with one spatial dimension is acquired.12

To obtain the full hypercube, containing two spatial (x,y) dimensions and one wavelength 
(λ) dimension, lateral scanning is performed. Finally, an area-scanning system generates 
a hypercube by collecting sequential spectral images for each wavelength band.12; 34 
Data acquisition occurs in small steps at a pre-defined wavelength range by using liquid 
crystal tunable filters (LCTF), acousto-optic tunable filters (AOTF),28 Fourier transform 
spectrometers,6 spectro-temporal scanners,17 and, more recently, volume holographic 
methods.24 
In MSI, a limited number of pre-defined wavelengths are selected according to the 
spectral signature of the chromophore of interest. Again, several approaches have been 
developed. The oldest and still most common technique uses a motorized filter wheel in 
front of the camera for sequential imaging at specific wavelengths. This type of camera 
is also used in our study. A more recent approach is the use of custom Bayer filters in 
front of the sensor so that each (group of ) pixels has its own bandpass filter. With these 
so-called snapshot multispectral cameras it is possible to obtain a hypercube without 
scanning. This technique is still under development.
Both HSI and MSI spectroscopic imaging may be integrated in conventional ocular 
fundus cameras enabling acquisition of retinal spectral hypercubes that contain two 
spatial (x,y) dimensions and one wavelength (λ) dimension, thus acquiring a 3D dataset 
or hypercube. 
Retinal spectral imaging techniques for ocular fundus imaging are usually integrated in 
commercially-available fundus cameras and as a result share many of its advantages such 
as large field of view, user friendliness, and high resolution.16; 22; 23; 27; 29; 30 Notwithstanding, 
the development of efficient retinal spectral imaging devices must address several issues 
inherent to spectral imaging of living tissue: transmission of light, image misalignment, 
temporal differences in tissue perfusion and spectral and spatial calibration. Limited 
transmission of light by the filter renders imaging at wavelengths below 500 nm difficult, 
and the high degree of variability of background signals induced by wavelength-dependent 
scattering may complicate data interpretation.39 Furthermore, image acquisition in the 
retina is very sensitive to cardiac-dependent differences in retinal perfusion patterns 
and eye movement artifacts.7; 26 In MSI, acquisition time is shorter because images are 
captured at selected wavelengths rather than uniformly across the entire spectrum as in 
HSI. Lastly, the raw spectral imaging data from an ocular fundus are affected by the 
level and chemical composition of the scanned structure but also by the intensity and 
homogeneity of illumination, the sensitivity of the detector and the transmission of the 
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optics.15 The effect of these factors is mostly wavelength dependent but is also sensitive to 
spatiotemporal variations. Image registration and alignment software allow images to be 
spatially aligned, but illumination levels may differ in the aligned regions of interest due 
to changes in angle of illumination because of movement and the anatomical curvature 
of the ocular fundus.13 
The aim of the present study was to develop and evaluate a fast and affordable MSI 
system with a filter wheel in the optical path. This newly-developed imaging system 
was tested and compared with a purposely-built HSI system incorporating a LCTF. A 
new method was described for retinal oximetry analysis that can be explored in future 
ophthalmic molecular imaging strategies. 

Materials and methods 
The hyperspectral fundus camera

The HSI device consists of a commercial mydriatic fundus camera (TRC-50LX; 
Topcon, Tokyo, Japan) and a LCTF (VariSpec; CRI, Woburn, MA, USA) incorporated 
in the optical path. The LCTF is a narrow bandpass filter based on stacked Lyot filter 
with an optical tuning range from 480 to 720 nm. The bandwidth varies between 5 nm 
at short wavelengths, and 20 nm at longer wavelengths. The filtered light is captured by 
a high-resolution camera with a spatial resolution of 1280 x 1024 pixels (DCC1545M, 
high resolution CMOS camera; Applied Laser Technology, Best, The Netherlands). To 
reduce noise generated by light reflected by the cornea and crystalline lens, the annular 
stop of the fundus camera was optically conjugated with the pupil of the eye. A linear 
polarizer was attached to the front of the CMOS camera to reduce specular reflection 
from the objective and from within the eye. The integration time varied from 50 to 
150 ms per wavelength. The field of view corresponded to approximately 35 degrees. 
Eye fixation was maintained by using a fixation light for the contralateral eye. The 
average time to acquire a full data set depended on the selected range of wavelengths; 
for a full spectrum, with 5 nm steps, the acquisition time was approximately 15 sec. 
All acquired images were combined into a hypercube data set for further analysis. The 
HSI system was controlled with a customized software program, written in LabView 
(National Instruments, Austin, TX, USA). A saturation histogram, live feed of the 
CCD recording, and retinal spectral image stacks were displayed on the software user 
interface. 

The multispectral fundus camera

Our MSI system was similar to the one described above with exception of the tunable 
filter and camera. The incorporated tunable filter was a SpectroCam Multispectral 
Imaging System (Pixelteq, Duiven, The Netherlands). The SpectroCam featured a high 



speed continuously rotating filter wheel containing 7 interchangeable optical filters. The 
following filters were selected 450 nm (15 nm bandwidth), 480 nm (25 nm bandwidth), 
509 nm (10 nm bandwidth), 542 nm (10 nm bandwidth), 558 nm (5 nm bandwidth), 578 
nm (10 nm bandwidth) and 620 nm (20 nm bandwidth). This filter set was optimized 
to match the spectral signatures of the main chromophores in the visible spectrum of 
oxygenated hemoglobin (HbO2) and reduced hemoglobin (HbR). A wideband CCD 
camera, with a resolution of 1392 x 1040 pixels, sensitive from ultraviolet to near infrared 
was used to enable the electronic capturing of retinal images. A linear polarizer was 
attached to the front of the CCD to reduce an artifact caused by the specular reflection 
from the two surfaces of the objective lens within the fundus camera and from the air-
cornea-lens interface. The field of view corresponded to approx. 20 degrees. The MSI 
imaging system was controlled with a software program provided by the manufacturer 
(Pixelteq). A saturation histogram, live feed of the CCD recording and retinal spectral 
image stack were displayed on the software interface. 

Participants and image acquisition

This study adhered to the tenets of the Declaration of Helsinki. Informed consent was 
obtained from each subject before imaging. Thirty voluntary participants with ages 
between 18 and 79 were scanned. Ten eyes were imaged using the HSI device and 20 
eyes were imaged using the MSI device. Exclusion criteria included poor quality images 
with significant artifact, or subject’s inability to abstain from blinking or movement 
during image acquisition. The original light source of the commercial mydriatic fundus 
camera (Topcon) was maintained in the setup of both HSI and MSI cameras thus 
complying with the established safety criteria for photobiological safety of lamps and 
ophthalmic instruments.9

Prior to eye scanning, the pupil was dilated using tropicamide 1% (1 drop). Eye fixation 
was maintained by instructing the subject to focus on a red fixation light with the 
contralateral eye. Acquisition time was 15 sec for the HSI device and 2.5 sec for the MSI 
device [0.8 sec when 2 wavelengths were applied (e.g. for ratio calculations)].  Scanning 
was repeated whenever large eye movements or blinking was observed, usually 3 times 
per participant. The best quality scan with the least amount of motion artifact was 
selected for analysis. 

Data pre-processing and analysis
Calibration and spectral pre-processing

Pre-processing was performed to eliminate or minimize unwanted artifacts such as noise, 
dead and spiked pixels, specular reflections, scattering effects and other instrumental 
variations. First, the dark response [Idark,ij(λ)] of the camera was subtracted. In order to 
correct for wavelength-dependent intensity differences in the light source, the background 
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response of a white reference plane (blank paper) at all wavelengths [Iwhite(λ)], previously 
corrected for the dark response, was: 

R is reflectance, I is light intensity and i and j are horizontal and vertical pixel indices. 
Reflectance spectra obtained from the HSI measurements were corrected using the 
standard normal variate algorithm.1 All data analysis was performed using custom-
made scripts written in MATLAB (The Mathworks, Natick, MA, USA).

Image registration and processing 

A cross-correlation technique was used for image registration in which similarities 
in consecutive images were used for alignment. The cross-correlation techniques 
requires similar features between images irrespective of the wavelength. However, as 
the appearance of spectral images change with wavelength, sequential spectral retinal 
images were acquired in such a way that the main features in retinal images (optic disc 
and large retinal vessels) were located in similar positions in the image field. Automatic 
motion correction was performed using ImageJ and the tool “linear stack alignment 
via Scale Invariant Feature Transform”25 to transform image data into scale-invariant 
coordinates relative to local features. 
Alternatively, a single wavelength image was selected that showed the highest contrast 
between different components based on absorbance differences. Compositional 
contrast between pixels in an image was displayed by grayscale with intensity scaling. 
Image quality was highly variable and depended on clarity of the m edia (presence 
of cataract), movement of the subject, fixation of the eye and intolerance to standard 
illumination levels. Images of each eye were acquired until quality was deemed 
acceptable for analysis (mean of 3 scans per eye). Poor quality images (defocused or 
with high movement between frames) were discarded after evaluation by 2 observers 
( JERC and RJMH). Data analysis was performed using custom-made scripts written 
in MATLAB (The Mathworks).  

Measurement of reflectance signals

Two different methods for retinal spectroscopy using hemoglobin as an intrinsic 
chromophore are presented. 



The first (indicative) method was based on the spectral signature of HbO2 and HbR. 
Fig. 1 shows that the spectrum of HbO2 has absorbance peaks at 542 nm and 578 nm 
and an absorbance trough at 558 nm, whereas the spectrum of HbR has an absorbance 
peak at 558 nm. The measured reflectance depends on contributions of both HbO2 and 
HbR and from other chromophores. In a low oxygenation state the contribution of HbR 
is increased, resulting in a low ratio between reflectance values at 558 nm and 578 nm. 
In cases of a high oxygenation state, the contribution of HbO2 is increased, resulting 
in a high 558/578 ratio. These ratios are affected by scattering and light absorbance 
by chromophores other than hemoglobin. The reflectance measurements have not 
been directly validated (e.g. against ex vivo measurements in phantom or Monte-Carlo 
simulations), therefore the acquired data can only be used to obtain an estimation of 
HbO2/HbR ratios which were expressed as the logarithm of the ratio of the reflectance 
value at 558 nm and that at 578 nm.
The second method was based on an algorithm that corrects for the influence of non-
hemoglobin absorption as well as tissue scattering. The measured reflectance spectra 
are corrected by linear transformation in order to match these with reference spectra of 
HbO2 and HbR at three isosbestic points, as first described by Hammer et al 21.  The O2 
saturation can then be determined by assuming a linear relationship with the corrected 
intensity at a wavelength showing a high contrast between HbO2 and HbR (e.g. 558 
nm). The original algorithm uses data at 3 isosbestic wavelengths (522 nm, 569 nm and 
586 nm) as well as 560 nm. The quality of the HSI data at these wavelengths precluded 
application of this correction method to images obtained with the HSI technique. We 
selected 4 wavelengths for images obtained with the MSI device, 509 nm, 542 nm, 578 
nm and 558 nm resulting in X509, X542, X578 and X558 as reflectance measurements. The 
theoretical reflectances R509, R542, R582, R0%

558 and R100%
558 were derived from the reference 

data. The reference data stems from the data shown in the Fig. 1 which depicts the 
absorption spectra for the pure components HbR and HbO2. In practice a mixture of 
two absorbers is measured, resulting in an absorption value somewhere between these 
two extremes. The superscripts 0% and 100% denote deoxygenated and oxygenated 
blood, respectively.  X is again expressed as the logarithm of the reflectance value in the 
pixel and R as the logarithm of the reflectance value of HbR and HbO2. We performed 
a simulation to assess the performance of the algorithm with our selected wavelengths. 
Results of the simulations are expressed as ‘estimated’ oxygenation values versus 
‘absolute’ oxygenation status. 
The algorithm comprised the following 5 steps. Each letter (A-D) in the algorithm 
corresponds to a specific set of wavelengths used in this and other studies (Table 1).
1. A linear function g(λ) with g(A) = RA and g(C) = RC is determined. 
2. A linear function f(λ) with f(A) = XA and f(C) = XC is determined. 
3. The measured data are added by the difference between g(λ) and f(λ):

X’ (λ) X (λ) + g (λ) – f  (λ)=
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The correction forces the values of the measurements to be identical with that of the 
reflectance data at the isosbestic wavelengths A and C. Thus it compensates for any 
extinction (by absorption or scattering) other than hemoglobin absorption provided that 
extinction is linear with wavelength in a logarithmic scale (i.e. an exponential function 
of the wavelength). 
4. A second correction step is applied to the data X’(λ) in order to correct for different 
conditions of illumination and measurement between the sample spectra and the reference 
spectra. In this correction step the data X’(λ) is stretched and compressed around the line 
g(λ) to match the reference data at isosbestic wavelength B, applying 
 

5. The oxygen saturation (OS) is indicated by X’’(D) on a linear scale between R0%(D) 
and R100%(D) 

MSI Hammer Braaf Isosbestic

A 509 522 530 522

B 542 569 542 549

C 578 586 582 586

D 450 560 562 560

 
Table 1. Wavelengths (nm) used for oxygenation estimation.

 
Results
The ocular fundus hypercube 

HSI and MSI images of the ocular fundus are analogous to a stack of images, each 
acquired at a narrow spectral band. The resulting data set is a 3D block of data, the 
so-called hypercube (Fig. 1), with two spatial (x,y) dimensions and one wavelength (λ) 
dimension.  This hypercube provides images for each wavelength (λi) and a reflectance 
spectrum in each individual pixel (xj,yk). Fig. 2 shows a typical retinal spectral data set at 
specific wavelengths obtained with the MSI and HSI devices. Image analysis demonstrates 
that light penetration is wavelength-dependent which results in an inhomogeneous 
representation of retinal structures at different wavelengths. At wavelengths above 590 
nm, the choroidal vasculature becomes visible with both techniques. 



Fig. 1. Illustration of the steps involved in retinal spectral imaging (a) 
Schematic representation of the multispectral retinal imaging device. The spectral 
signature of a chromophore of interest (Hb and HbR) is determined by optical 
spectroscopy. The resulting spectrum is presented as reflectance versus wavelength. A 
specific wavelength filter set is pre-selected in MSI with gain adjusted per wavelength. In 
HSI, a tunable filter is used for image acquisition at a range of wavelengths.  The tunable 
filter is incorporated in the optical pathway of a commercially-available mydriatic fundus 
camera. (b) Retinal multispectral dataset (or hypercube), with two spatial (x,y) and one 
wavelength (λ) dimension. An image plane of the hypercube is shown for one wavelength 
(λi) and a reflectance spectrum is obtained of one pixel (xj,yk). 

Comparison of MSI with HSI

Images obtained with MSI were of better quality when compared to images obtained 
with HSI (Fig. 2). The gain was optimized for each wavelength that was used for 
measurements with MSI, resulting in good quality measurements at lower wavelengths. 
The HSI device failed to capture acceptable quality images at wavelengths < 558 nm 
and was more prone to artifacts. Acquisition time was longer for the HSI device (15 sec 
versus 2.5 sec), which in turn resulted in increased image misalignment. For this reason, 
we did not use HSI data for further analysis. Table 2 summarizes the main advantages 
and disadvantages of each method.  
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Fig. 2. Comparison of ocular fundus images captured with MSI and 
HSI. With MSI, images are captured at pre-selected wavelengths (with adjustment of 
gain per wavelength) based on the spectral properties of hemoglobin in blood. A full 
spectral scan (480 - 800 nm) is performed with the HSI system. The MSI system has a 
shorter acquisition time, captures images at lower wavelengths (> 450 nm) produces less 
image artifacts and the alignment and overall image quality are superior. Images are 
normalized and registered. 

Multispectral Imaging
Acquisition time: 2.5 sec

Hyperspectral Imaging
Acquisition time: 15 sec



Hemoglobin reflectance measurements in the retina

The reflectance spectra of different regions of the retina are presented in Fig. 3. 
Distinct reflectance minima are present at 540 nm and 585 nm, which correspond to 
the absorbance peaks of HbO2. A distinct reflectance peak is present at ~ 560 nm and 
corresponds to the absorbance peak of HbR. 

Fig. 3. Reflectance spectrum of different retinal regions. (a) MSI ocular fundus 
image at 542 nm. (b) Corresponding reflectance spectra (colored squares correspond to 
colored lines) of different regions in the retina. Reflectance demonstrates troughs at 542 
nm and 578 nm corresponding to the absorbance spectrum of HbO2. 

Reflectance spectra ratios of hemoglobin 

We obtained 2D distributions of HbO2 and HbR in the retina by calculating the ratio of 
the reflectance values at 558 and 578 nm (Fig. 4). A smoothing filter was applied to the 
data to reduce noise. A higher ratio indicates a larger contribution of HbO2 with respect 
to HbR, which may provide an estimation of relative oxygen saturation levels. In Fig. 
5, a reflectance spectrum from one pixel from a retinal arteriole and venule are shown. 
In the wavelength range 540 – 580 nm, the reflectance spectra differ with higher ratios 
in the artery. This reflects physiological levels of oxygen saturation. These values are 
expected to approximate relative oxygen saturation; the actual oxygen saturation levels 
are unknown because the experiments lack proper validation. 
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Fig. 4. Visualization of a 2-wavelength ratio of reflectance spectra. (a) 
Absorbance spectra of HbO2 and HbR showing 3 selected wavelengths, 558 nm with a 
peak of HbR (blue arrow) and a trough of HbO2 (red arrow) and the dual peak of HbO2 
at 542 and 578 nm (red open arrow). (b) Grayscale image of the ratios of reflectance at 
558 nm and 578 nm. Regions in white correspond to areas of high relative oxygenation.



 Fig. 5. Reflectance spectra of artery and vein. (a) Multispectral image of the 
peripapillary region showing an artery (red) and a vein (blue), selected for reflectance 
measurements. (b) Reflectance measurements in the artery and vein. The 558/578 ratio 
corresponds to reflectance measured at 558 nm corresponding to the combination of 
the trough absorbance of HbO2 and at 578 nm corresponding to the peak absorbance 
of HbO2; the artery shows a higher 558/578 ratio which means that the contribution of 
HbO2 is higher than the contribution of HbR. 

 
 
Estimation of relative retinal oxygen saturation  
by the Hammer correction algorithm 

2D distributions of relative retinal oxygen saturation as calculated using the Hammer 
correction algorithm are presented in Fig. 6. The correction algorithm was applied to 
the reflectance spectra obtained in each pixel of the retinal vessels and tissue. The filter 
set used in our MSI setup differed from the setup described by Hammer et al 21. Other 
studies reported adaptations to the original method by using different wavelengths for 
the estimation of oxygenation (Table 1). We plotted the estimated oxygenation values 
obtained with the wavelengths selected in the present study and other studies with 
absolute (or ideal) oxygenation levels (Fig. 6c). Data shows that measurements with 
our MSI setup underestimate oxygen saturation levels at low oxygen saturation status, 
whereas estimates of higher oxygen saturation levels approximate ideal oxygenation 
measurements. 
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Fig. 6. Visualization of relative retinal oxygen saturation. (a) Determination 
of the relative saturation of oxygen by comparing the measured reflectance with 
reference spectra of fully oxygenated and deoxygenated blood (in grayscale). The 
algorithm is applied to measured reflectance data of the ocular fundus, with unknown 
oxygen saturation, at the wavelengths described for the MSI in Table 1. (b) Simulation 
of oxygen saturation levels using reflectance at various wavelengths described in 
Table 1. Estimated oxygenation values obtained with the wavelength settings used 
for the MSI device underestimated the relative oxygen saturation measurements 
when plotted against low absolute levels of oxygen saturation. At higher levels of 
estimated oxygen saturation, the values were similar independently of the wavelength. 



Fig. 1 Suppl. Wavelength-dependent penetration depth in retinal tissue. 
Ocular fundus images of a branch retinal vein occlusion at specified wavelengths. Images 
captured at wavelengths < 600 nm show arterioles (red arrows) and venules (blue arrows) 
and hemorrhages alongside the inferior vascular arcade (a, b). At wavelengths ≥ 600 
nm (c), arterioles are less visible as compared with venules. The choroid is visualized at 
wavelengths ≥ 650 nm (d) due to higher penetration of light. At these wavelengths, blood 
is no longer visible. 

Discussion

In our study, we compared efficiency and applicability of two spectral retinal imaging 
techniques, HSI and MSI. Development of molecular imaging contrast agents and 
approval for human use have been slower than expected. Therefore, hemoglobin was 
selected as an example of a naturally-occurring chromophore for retinal oximetry studies. 
MSI showed important advantages over the HSI system. First, the spatial resolution of 
the images obtained with MSI was higher. The short acquisition time of MSI reduces 
image alignment issues that may interfere with image pre-processing and spectral 
analysis. Moreover, exposure time can be adjusted per wavelength, which increases 
efficiency and comfort for the patient when compared to the HSI system. Nevertheless, 
our setup is affected by inherent difficulties similar to other retinal spectral imaging 
devices. Both techniques are prone to image acquisition artifacts in the raw reflectance 
images. Corneal reflections, blinking, and inability to hold the eyes open during 
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acquisition produce artifacts that at times cannot be corrected by image pre-processing 
techniques. Several methods have been described to reduce these artifacts which involve 
the exclusion of pixels when the model fit does not conform to expected.36 Inaccurate 
measurements may also result from variations in illumination due to different light 
paths through the eye and the concave shape of the ocular fundus. In the case of retinal 
tissue oximetry, scattered light from blood vessels may interfere with measurements in 
surrounding tissue, which confounds reflectance measurements of hemoglobin in that 
region. This creates a low-pass filter effect, where the spectrum of each pixel represents 
an averaged spectrum of bordering pixels. 
The spectral signature of a specific chromophore refers to distinct absorbance peaks at 
specific wavelengths that in turn can be used to recognize the chromophore of interest. 
Monte Carlo simulations have shown that at lower wavelengths, macular pigment and 
choroidal melanin affect reflectance measurements.38 The method proposed by Hammer 
et al. is suitable for the calculation of blood oxygenation from reflection measurements 
at 4 wavelengths.21 Moreover, tissue scattering can often be approximated by an 
exponential function of the wavelength which allows determining the compensation of 
scattering losses.20

We proceeded to evaluate the efficacy of the MSI device in its application to human 
subjects. Oximetry refers to the spectroscopic determination of blood saturation by 
oxygen, which is defined as the percentage (ratio) of HbO2 over the total amount of 
hemoglobin. Several methods have been described for this purpose. Light absorbance 
can be measured at 2,3 3,31 4,14; 21 or 532 different wavelengths that are relevant for 
the determination of blood saturation by oxygen. The main component of human 
blood that absorbs light is hemoglobin. Therefore, the absorbance characteristics are 
taken as an approximation of that of blood. The first retinal oximetry studies using 
spectral recordings were reported by Hammer and Schweitzer.33; 35 Most studies on 
retinal oximetry measure oxygenation in retinal vessels.2 Retinal tissue oxygenation 
measurements are complex to validate due to the dual vasculature of the neurosensory 
retina and wavelength-dependent penetration depth of the laser light. 
We present 2 absorbance spectroscopy methods that can be applied for purposes 
other than oximetry. The first method is a simple assessment of the ratio between the 
absorbance peaks of hemoglobin. This simplified analysis ignores several considerations 
that are specific to retinal imaging, namely absorption by other chromophores such as 
melanin and loss of light due to tissue scattering. Light scattering by erythrocytes affects 
the absorbance spectrum of whole blood.4 Spectra measured in retinal blood vessels 
reflect the absorbance by hemoglobin and scattering from erythrocytes and surrounding 
tissues. In addition, spectra are also affected by the presence of melanin in the retinal 
pigment epithelial and the choroid.19 As a consequence, spectra measured in retinal 
blood vessels may be affected by the optical properties of the surrounding tissue.8; 33; 37 
Furthermore, the raw reflectance data are affected by the non-homogeneous distribution 
of blood in the retina. Therefore, the concentration of a specific chromophore cannot be 
obtained without accurately determining the diameters of the vessels, which is complex 



for   in vivo  measurements with the current setup. The first method presented in this 
study is therefore not fit to retrieve validated oxygenation maps of the retina. However, 
the reflectance spectra of arteries and veins shown in Fig. 4 are in agreement with what 
was expected. 
In an attempt to validate our measurements, we applied a spectroscopic technique based 
on the correction algorithm described by Hammer et al.21 Measurements of oxygen 
saturation in the clinic are relative and not absolute, because these rely on standard 
calibrated models (such as the 2-wavelength model) dependent on arterial and venous 
oxygen saturation values that are used to compute calibration constants.5 In this method, 
we assume a linear relationship of percentage of blood oxygen saturation and absorbance 
of hemoglobin in solution and blood.3; 40 This method retrieves retinal oxygenation 
maps that demonstrate a significant underestimation of retinal oxygenation in tissue 
and vessels. At higher oxygen saturation, estimated oxygenation levels approach ideal 
estimates. The oxygenation maps shown in Fig. 6 can only be used as an indication of 
differences in oxygenation levels in the retina, since the data is not validated for absolute 
oxygenation levels in the human eye. Validation of retinal tissue spectral imaging data 
requires accurate modeling of light transport (for instance by Monte Carlo simulations) 
as well as analysis of the spectral properties of each tissue layer. This method, however, 
can be modified when used in combination with extrinsic molecular imaging agents. 
Any process on a molecular level affects measurements of specific parameters because 
the emission wavelength of probes depends on their microenvironment. Therefore, the 
spectra shift by changes in the environment such as pH. These spectra can be attained 
with this technique similar to as it has been described for hemoglobin.
We found an uneven distribution of HbO2 in retinal tissue. This speckled pattern has 
also been demonstrated in other studies of retinal tissue oximetry10 and is caused by a 
combination of factors. Studies have shown that at wavelengths above 590 nm, retinal 
spectroscopy also probes the choroid, which in turn affects oxygenation measurements 
due to its high blood flow.10 This is exemplified in Suppl. Fig. 1, in which spectral imaging 
of the choroid at wavelengths > 600 nm was not affected by a large hemorrhage. On 
the other hand, Monte Carlo simulations demonstrated that in the 500 – 600 nm 
range, hemoglobin reflectance originates from the neurosensory retina in a larger 
proportion than choroidal hemoglobin does which means that measurements up to 600 
nm depict the contribution of the inner retinal vasculature38. In addition, pigmentation 
differences between ocular fundi may result in different contributions of the choroid to 
outer retinal oxygenation.10 The patchy oxygenation pattern may also be explained by 
image acquisition noise, which was not smoothed in our analysis at the expense of a 
lower spatial resolution. The speckled pattern may also reflect a ‘true’ unequal oxygen 
distribution in the retina, similar to findings in brain tissue. Brain tissue oxygenation 
studies have shown large partial pressure of oxygen (PO2) differences in areas outside 
arterioles and venules.11 
In summary, our study demonstrates the superior properties of a MSI device over a HSI 
device for ocular fundus spectral imaging. The MSI technique enables the acquisition 
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of high-resolution images both at low and high wavelengths. The ability to select 
spectral filters based on the spectral properties of specific chromophores opens up new 
possibilities for MSI to be applied in a wider range of molecular imaging applications. 
The development of extrinsic contrast imaging agents will dictate further development 
of the field of retinal spectral molecular imaging. 
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Abstract

The aim of molecular imaging techniques is the visualization of molecular processes 
and functional changes in living animals and human patients before morphological 
changes occur at the cellular and tissue level. Ophthalmic molecular imaging is still in 
its infancy and has mainly been used in small animals for pre-clinical research. The 
goal of most of these pre-clinical studies is their translation into ophthalmic molecular 
imaging techniques in clinical care. We discuss various molecular imaging techniques 
and their applications in ophthalmology.

Introduction

The eye, compared to other tissues and organs, offers unique opportunities for imaging 
because of the presence of clear optical media. This means that images can be ac-
quired repeatedly in a noninvasive manner. Most existing in vivo imaging methods of 
the eye visualize anatomical and morphological features and not molecular processes.
Molecular imaging techniques allow the visualization of functional changes before 
these are visible otherwise. Convergence of molecular cell biology with non-invasive, 
high-resolution in vivo imaging techniques has proven to be of great value in the un-
raveling of disease-causing molecular processes in cells and tissues. Molecular imag-
ing is used for the study of a multitude of biological processes such as assessment of 
molecular interactions, visualization of multiple molecular events, pharmacokinetics, 
gene expression and effects of gene therapy-all accomplished in a reliable, fast, and 
quantitative manner. The ability to image pre-pathological mechanisms occurring 
in the natural micro-environment of cells and tissues in the body has already led to 
great advances in experimental medicine using laboratory animals.179  It is expected 
that in the near future molecular imaging techniques will not only be used for basic 



medical research, but also for customized patient care in a new era of molecular med-
icine.116,  139,  188 Ophthalmic molecular imaging is still evolving, but progress is being 
made. In vivo imaging of ophthalmic molecular processes occurring in eyes of both 
human patients and experimental animals has already been achieved by several re-
search groups worldwide.
Molecular imaging strategies are based on the use of endogenous or exogenous molecular 
probes or contrast agents to image molecular processes in cells or tissues of interest non-in-
vasively, thus combining morphological information with real-time imaging of molecular 
processes. Many currently used imaging modalities are explored for molecular imaging, 
whereas others have been purposely developed. Molecular imaging modalities include 
optical imaging techniques such as fluorescence imaging, bioluminescence imaging, re-
flectance-based approaches, magnetic resonance imaging (MRI), radionuclide techniques 
such as positron emission tomography (PET) and single photon emission tomography 
(SPECT), ultrasonography, and computed tomography (CT).89, 92, 101, 108 Thus far, molecu-
lar imaging has been largely applied in pre-clinical research using experimental animals 
due to the fact that the pharmacological and toxicological profiles of molecular probes 
have not yet been elucidated and thus are not approved for use in humans. Nevertheless, 
new contrast agents have been recently approved, and the use of endogenously expressed 
molecular probes or contrast agents is being explored.
We summarize recent developments that have been achieved by the application of molecu-
lar imaging techniques in ophthalmology (Table 1). In addition, modalities that have been 
adapted or developed for ophthalmic molecular imaging purposes are reviewed (Table 2).

Imaging modality
Measurement 

site
Information

Contrast agent or 
metabolite

Subjects Refs.

Apoptosis

Heidelberg retinal 
angiograph and 
scanning laser 
ophthalmoscope

Inner retina
Retinal ganglion cell 
apoptosis

Fluorescently labeled 
annexin 5

Murine 56,  109,  E

Scanning laser 
ophthalmoscope

Inner and outer 
retina

Inner and outer retina 
apoptosis after laser 
overexposure

Fluorescently labeled 
annexin 5

Murine 118,  156

Ocular Oxygen Homeostasis

Magnetic resonance 
imaging

Vitreous body
PO

2
 gradients in the 

vitreous body
Oxygen – paramagnetic 
characteristics

Murine
8,  9,  78,  147, 148,  
176,  204

Fluorine-19 magnetic 
resonance spectroscopy

Vitreous body
PO

2
 gradients in the 

vitreous body
Perfluorocarbon droplet

Murine 
 
Human

60,  189,  204, 
205
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Optical 
phosphorescence 
imaging

Retina (tissue 
and vasculature)

PO
2
 gradients in the 

retinal vessels and 
retinal tissue

Oxygen-sensitive 
molecular probe, 
OxyphorR239, 40

Murine 161, 162

Multispectral retinal 
imaging

Retina (tissue 
and vasculature), 
optic nerve head

PO
2
 gradients in the 

retinal vessels and 
retinal tissue

Oxygen – absorbance 
spectrum

Human
52,  71,  120,  123, 
131

Spectrophotometric 
retinal oximeter

Retina 
(vasculature)

PO
2
 gradients in the 

retinal vessels
Oxygen – absorbance 
spectrum

Human
61,  62,  63,  64, 
65,  133,  157, 
173,  175,  202

Ocular Immune Responses

Stereofluorescent 
microscope; 
 
Epifluorescent 
microscope

Cornea

Infiltration of 
inflammatory cells 
(neutrophils) into the 
cornea

eGFP-marked 
inflammatory cells

Murine 22,  172

Intravital microscopy Cornea
Visualization of corneal 
dendritic cell networks

CD11c-YFP-marked 
dendritic cells

Murine 97

Intravital microscopy Cornea
T cell migration into 
and within the cornea

Labeled ovalbumin-
specific T cells

Murine 172

Epifluorescent 
microscope

Iris
Trafficking and 
uveitogenic potential 
of CD4+ T cells

Labeled ovalbumin-
specific CD4+ T cells

Murine 6

Intravital microscopy 
and scanning laser 
ophthalmoscope

Iris
Leukocyte dynamics in 
the iris

Carboxylated fluorescent 
microspheres conjugated 
with glycoprotein 
ligand-1

Murine 193

Scanning laser 
ophthalmoscope

Retina 
(vasculature)

Leukocyte dynamics in 
the retina

Labled calcein-AM 
syngeneic T cells

Murine
30,  195,  196, 
197,  198

Scanning laser 
ophthalmoscope

Retina 
(vasculature)

Leukocyte dynamics in 
the retina

Acridine Orange Murine 58

Scanning laser 
ophthalmoscope

Choriocapillaries

Endothelial injury in 
choriocapillaries in a 
model of endotoxin-
induced uveitis

Fluorescent 
microspheres conjugated 
to rOSFL-Ig

Murine 119

Scanning laser 
ophthalmoscope

Retina

Microglia cells, 
dendritic cells 
and macrophages 
visualization

Replacement of one 
copy of the fractalkine 
receptor (CX3CR1) gene 
by GFP

Murine 44

Microscopic Retinal Structures

Scanning laser 
ophthalmoscope

Retina
Visualization of retinal 
ganglion cells

Thy-1-CFP-marked 
retinal ganglion cells

Murine 100

Scanning laser 
ophthalmoscope

Retina
Visualization of retinal 
ganglion cells

Fluorescent 4-DiA 
marked retinal ganglion 
cells

Murine 69

Scanning laser 
ophthalmoscope

Retina
Visualization of retinal 
ganglion cells

Calcium fluorescent 
markers for retinal 
ganglion cells

Murine 141,  151



Scanning laser 
ophthalmoscope

Retina
Visualization of retinal 
ganglion cells

Rhodamine dextran-
marked retinal ganglion 
cells

Primates 53

Scanning laser 
confocal microscope

Retina

Visualization of 
retinal ganglion 
cells dendrites and 
amacrine cells

Fluorescent reporters 
expressed in retinal 
ganglion cells

Zebrafish 122

Fluorescence 
Microscope

Retina

Visualization of 
retinal ganglion 
cells, axonal growth 
plasticity

Fluorescent 
carbocyanine dye Dil 
targeting of retinal 
ganglion cells

Goldfish 32

Transplanted Cells

Scanning laser 
microscope

Retina 
(vasculature)

Visualization of stem 
cells and retinal 
vasculature

Bone-marrow derived 
lineage-negative 
haematopoietic GFP-
expressing stem cells

Murine 146

Ion Activity

Manganese-
enhanced magnetic 
resonance imaging

Retina

Determination 
of changes in ion 
activity and retinal 
thickness

Manganese Murine 10

Contrast-enhanced 
proton magnetic 
resonance imaging

Anterior and 
posterior eye 
chamber

Plasma protein 
diffusion into the 
aqueous humor

Gd-DTPA
Rabbits; 
monkeys

91

Deuterium magnetic 
resonance imaging

Anterior and 
posterior eye 
chamber

Water movement Deuterated saline Murine 132

Neural Visual Response

Positron emission 
tomography (PET)

Occipital visual 
cortex and lateral 
geniculate nuclei

Attenuation 
of the central 
visual pathway 
due to unilateral 
hypertension 
glaucoma

2-[19F]fluoro-2-deoxy-
glucose and [11C]
PK11195

Monkeys 76

Single-photon 
emission computed 
tomography (SPECT)

Occipital visual 
cortex

Hypoperfusion of the 
occipital visual cortex 
in ophthalmoplegia

Tc-99 m 
hexamethylpropylene 
amineoxime

Humans 55

Manganese-
enhanced magnetic 
resonance imaging

Retina
Detection of ectopic 
expression of 
channelrhodopsin-2

GFP-
channelrhodopsin-2 
fusion construct

Murine 79

Diffusion magnetic 
resonance imaging

Optic nerve
Axonal and myelin 
damage

Water diffusion 
properties

Murine 199

Blood-Retinal Barrier Permeability

Scanning laser 
ophthalmoscope

Retina 
(vasculature and 
tissue)

Blood–retinal barrier 
permeability

Rhodamine-labeled 
nanoparticles, 
rhodamine-labeled 
Lutrol-SDS particles, 
rhodamine-labeled 
DEAE-Lutrol particles

Murine 141,  151
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Fluorescence 
mediated 
tomography

Vitreous body
Blood–retinal barrier 
permeability

Cy 5.5 Murine 67

Dynamic contrast 
enhanced magnetic 
resonance imaging

Vitreous body
Blood–retinal barrier 
permeability

Gd-DTPA Murine 11

Retinal Gliosis

Scanning laser 
ophthalmoscope

Optic disk 
astrocytes, 
retinal glial cells

Retinal gliosis GFAP-GFP transgene Murine 72,  95

Pharmacokinetics

Manganese-
enhanced magnetic 
resonance imaging

Anterior segment 
and vitreous 
body

Assessment of the 
electrical current 
pathways and the 
sites of drug delivery 
in transscleral 
and transcorneal 
iontophoresis

Manganese Rabbits 102

Magnetic resonance 
imaging

Vitreous body 
and posterior 
segment

Real-time movement 
of a drug surrogate 
released from a 
polymer-based 
intravitreal implant

Gd-DTPA Rabbits 85

Dynamic contrast 
enhanced magnetic 
resonance imaging

Anterior and 
posterior 
segment

Distribution and 
clearance of Gd-
DTPA

Gd-DTPA Rabbits 87

Micro-positron 
emission tomography

Vitreous body 
and posterior 
segment

Distribution and 
clearance of 
bevacizumab and 
ranibizumab in the 
vitreous cavity

I-124 Rabbits 28

Ocular 
fluorophotometry

Anterior segment

Distribution and 
clearance of 
fluoresceinated 
dextrans

Fluorescein Rabbits 7

β-Amyloid Retinal Plaques

Fluorescence 
microscope, 
multispectral retinal 
imaging

Retina
Visualization of 
β-amyloid retinal 
plaques

Curcumin 
(diferuloylmethane)

Murine 93

 
Table 1. Characterization of molecular processes imaged by ophthalmic molecular 
imaging techniques.



Imaging modality Applications Advantages Disadvantages

Optical Imaging

Fluorescence 
mediated tomography

Blood–retinal barrier 
studies

Monitoring of multiple 
molecular processes; 
 
Wide applicability; 
 
Relatively inexpensive

Low penetration depth, especially at 
visible wavelengths; 
 
Not applicable in humans; 
 
Limited anatomical information

Scanning laser 
ophthalmoscope

Apoptosis imaging; 
 
Ocular immune response; 
 
Retinal ganglion cells 
imaging; 
 
Stem cells imaging; 
 
Blood–retinal barrier 
studies

Relatively low cost; 
 
Optics of the eyes serve as 
an objective lens; 
 
In clinical use

Monochromatic images

Retinal multispectral 
imaging

Retinal oxygen 
homeostasis; 
 
Optic nerve head imaging; 
 
β-amyloid retinal plaques 
imaging

Potential for future 
applications with 
molecular imaging 
probes; 
 
In clinical use

Experimental setup; 
 
Long exposure times; 
 
Uncomfortable for the patient

Optical coherence 
tomography (OCT)

No in  vivo experiments 
reported

Cross-sectional 
anatomical and 
morphological 
information combined 
with molecular imaging; 
 
Can be used almost 
universally in humans; 
 
Relatively low cost; 
 
In clinical use

Probes need to be Ionized; 
 
Probes need to accumulate at the region 
of interest

In  vivo scanning laser 
microscopy

Cellular imaging of the 
cornea; 
 
Ocular immune response

High resolution for ocular 
surface tissues; 
 
In clinical use

Surface contact required; 
 
Limited penetration depth
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Multiphoton excitation 
fluorescence 
microscopy

Cellular imaging of the 
cornea; 
 
Intra-operative 
monitoring during corneal 
surgery; 
 
Imaging of trabecular 
meshwork

High resolution; 
 
Potentially less 
phototoxicity and 
bleaching when compared 
to confocal microscopy; 
 
High penetration depth

Not in clinical use; 
 
Optics of the eye reduce efficacy; 
 
Numerical aperture limited by large 
distance between plane of focus and 
anterior pole of the eye in retinal imaging

Radionuclide imaging

Positron emission 
tomography (PET)

Neural visual cortex 
response

High sensitivity; 
 
Quantitative; 
 
High penetration depth; 
 
Operates at 
concentrations as low as 
picomolar; 
 
In clinical use

Cost; 
 
Low resolution for ocular structures

Single-photon 
emission computed 
tomography (SPECT)

Detection of uveal 
melanoma; 
 
Neural visual cortex 
response

High sensitivity; 
 
Quantitative; 
 
High penetration depth; 
 
Relatively low cost; 
 
Detection of multiple 
probes 
 
In clinical use

Low resolution for ocular structures

Magnetic Resonance 
Imaging (MRI)

Oxygenation studies; 
 
Blood-retinal barrier 
studies; 
 
Ion activity in the eye: 
 
Ocular drug delivery 
studies

High spatial resolution; 
 
Excellent for 
morphological and 
functional imaging; 
 
Good soft tissue contrast; 
 
In clinical use

Low sensitivity; 
 
Needs high molecular imaging probe 
concentration; 
 
Cannot be used universally in humans; 
 
Expensive; 
 
Long acquisition time

 
Table 2. Characterization of imaging modalities currently used in ophthalmic  
molecular imaging.



Molecular imaging modalities in ophthalmology 
Optical imaging 

In vivo optical imaging techniques use light emitted through fluorescence, biolumines-
cence, absorbance, or reflectance as a source of contrast in tissues. Optical image capture 
systems are based on diffuse optical tomography, surface-weighted imaging (reflectance 
diffuse tomography), phase-array detection, confocal imaging, multiphoton imaging, or 
microscopic imaging with intravital microscopy.188 Optical imaging techniques relevant 
for ophthalmic molecular imaging will be discussed in the following sections.

Fluorescence and bioluminescence imaging

In fluorescence optical imaging, an external light source or laser excites target fluores-
cent molecules that then emit a signal with different spectral characteristics. Target cells 
are modified to express a specific fluorescent protein or a fluorescent tagged reporter is 
constructed into the animal. Imaging of fluorescent proteins such as green fluorescent 
protein (GFP), whose expression is regulated by the promoter of a gene of interest in 
specifically constructed transgenic mice, has revolutionized cell biology89,  188  and pa-
thology.73, 74 A vast number of fluorescent proteins are now available. Translating these 
imaging techniques to patient care is promising.107, 188

Bioluminescence imaging exploits the emission of photons at specific wavelengths by lu-
ciferases that have been cloned from different organisms.89 In the firefly, luciferase utiliz-
es energy from adenosine triphosphate to convert its substrate, luciferin, to oxyluciferin 
with the emission of a photon. Expression of the luciferase gene can be controlled by the 
promoter of a gene of interest. This technique does not require an external light source 
and can be used to image distribution patterns and growth kinetics of, for example, 
cancer and bacterial organisms or to image the spatial distribution of gene expression 
products. So far, bioluminescence imaging has only been used in ex vivo ophthalmic 
research.
Bioluminescence imaging allows imaging at greater depth, higher sensitivity, and lower 
background signal when compared to fluorescence imaging. In bioluminescence, light 
has to travel only once through the tissue, whereas in fluorescence imaging both the 
excited as well as the emitted light are absorbed and scattered by various tissues, thus in-
creasing the background signal and penetration depth.89 Depth of penetration is related 
to scattering and absorption of light. The latter is primarily a function of the wavelength 
of the light. The longer the wavelength, the better tissue penetration is achieved.73 One 
of the major advantages of fluorescence imaging is the ability to study different molecular 
processes in the same cell or animal model due to the many available fluorescent proteins 
with different emission spectra.
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Reflectance imaging

Reflectance-based imaging modalities measure reflectance of light. Three main reflec-
tance-based techniques are used in ophthalmic molecular imaging: the scanning laser 
ophthalmoscope (SLO), retinal multispectral imaging, and optical coherence tomog-
raphy (OCT). These modalities may use adaptive optic systems to improve their per-
formance. Adaptive optics attenuates the effects of dynamic optical distortion. These 
systems incorporate a wavefront sensor to measure the distortions induced by the ocular 
media, a deformable mirror (or a material with variable refractive properties) that lies in 
the optical path, and a computer that receives input from the detector and calculates the 
ideal mirror shape to correct the distortions.59

The SLO, a retinal optical imaging device based on standard scanning laser micros-
copy185 is an imaging technique that scans the fundus with a highly collimated narrow 
laser beam. Reflected light from a particular spot is detected by a photomultiplier and 
synchronously decoded to build up an image. Incident and reflected light follow a coaxial 
path—that is, a small aperture is used for illumination, and the remaining large area of 
the pupil is used for collection of reflected light.136, 164 In the SLO, the optics of the eye 
serve as the objective lens, and individual ocular aberrations can be overcome by adap-
tive optics systems. Scanning laser ophthalmoscopes and microscopes, when equipped 
with a confocal aperture, offer fundamentally better performance than conventional 
imaging instruments due to elimination of scattered light. The confocal SLO gener-
ates high contrast images and is able to do optical sectioning through weakly scattering 
media, making it ideal for imaging the multilayered retina. This technique has been 
widely used in ophthalmic pre-clinical research in various applications such as apoptosis 
imaging,56,  109,  118,  153,  D  blood–retinal barrier studies,141,151  imaging of retinal ganglion 
cells,53,  69,  100,  141,  151  immune response assessment,30,  42,  58,  119,  195,  196,  197,198 and stem cell 
imaging146  (Table 1). Image improvement has enabled the visualization of the lamina 
cribrosa in glaucoma,182 localized retinal vessel blood flow, and individual photoreceptor 
imaging.41,  149  Clinically, the most popular SLO instrument is the Heidelberg retinal 
tomograph, which is currently used to acquire topographical images of the optic nerve 
head to study changes in this anatomical region.54 The Heidelberg retinal angiograph is 
an adaptation of the Heidelberg retinal tomograph designed for simultaneous fluorescein 
and indocyanine green angiography. This device detects fluorescence and is used in the 
clinic for fluorescein angiography and measurement of fundus autofluorescence derived 
from lipofuscin accumulation.5, 35, 75

Retinal multispectral imaging measures reflectance of light from the retina. A liquid 
crystal wavelength tunable filter generate light of a series of narrow wavelength bands. 
The camera captures images of the light reflected by the retina while the filter tunes over 
the spectrum, and in that way, creates a stack of images of light of different wavelengths 
over the entire spectrum. Halogen or xenon lamp systems are the light source, and a set 
of relay lens systems and collimating optics optimize the signal.71, 123, 131, A, B This multi-
spectral imaging system has the advantages of a fundus camera: large field of view, user 



friendliness, and high resolution. One of the disadvantages of the technique is that the 
recording takes place sequentially over time at the different wavelengths that can induce 
cardiac-dependent differences in retinal oxygenation patterns and eye movement arti-
facts. Low transmission of light by the filter renders imaging below 460 nm difficult, and 
the high degree of variability induced by wavelength-dependent scattering may make 
data interpretation difficult.68, 173

Retinal multispectral imaging devices are used in oxygenation studies of the posteri-
or eye segment in humans.52,  71,  120,  123,  A,  B  Oxygenation studies of the retina use the 
principle of oximetry by means of spectrophotometry. Oximetry is based on the Lam-
bert-Beer law (A = ε × b × c in which A = absorbance, ε = molecular extinction coef-
ficient, b = the length of the path that the light traverses, and c = concentration of the 
light-absorbing compound in solution). The law states that light transmission through a 
solution diminishes exponentially as the concentration of the solution and the distance 
through it increase. Oximetry measures how much light is differentially absorbed at a 
given wavelength by reduced hemoglobin and oxyhemoglobin. Hemoglobin is the main 
light-absorbing component of human blood. Therefore, absorbance at a specific location 
in a retinal vessel is assumed to be mainly caused by hemoglobin. Retinal multispectral 
imaging thus generates a stack of images of the retina at a series of wavelengths, enabling 
the calculation of the absorbance of retinal arterioles and venules. The oxygen satura-
tion is then calculated for a particular retinal vessel. Retinal multispectral imaging use 
fluorescent probes that tag specific molecules. In this approach, a fluorescent probe is 
used and the specific excitation and emission wavelengths for that probe used.93 When 
molecular probes are approved for human use, multispectral imaging may well become 
a versatile technique to retrieve information from a specific probe in the eye with known 
spectral characteristics.
Finally, OCT is a form of reflectance-based imaging that has already revolutionized 
ophthalmology by its widespread clinical applications. All OCT techniques are based on 
the principle of low-coherence interference in which light reflected from the eye interacts 
with light that has travelled a known path. This so-called interferometric setup, known 
as a Michelson interferometer, divides the emitted light in two directions towards a ref-
erence mirror and the sample, the eye. The beams then recombine at the beamsplitter 
and are guided to a detector. When the reference mirror is moved and the eye is at a 
fixed position, the detector measures an interference pattern. Because the path length of 
the reference light beam is known, the path length of the sample light beam, and thus 
the position of the reflecting structure in the eye, can be calculated. On the basis of that 
information, a so-called A-scan can be constructed that refers to the measurement of the 
reflectivity (the power of the interference pattern) versus depth. The final image is the 
longitudinal OCT or B-scan, which is constructed from serial A-scans with reflectivity 
plotted on a grayscale or false-color scale.33 Van Velthoven et al. describe the advances 
of ophthalmic OCT technology in a recent review article.180 The most frequently used 
OCT technique has been time-domain OCT (TD-OCT), recently replaced by the Fou-
rier-domain OCT (FD-OCT; also named spectral-domain OCT [SD-OCT]). In this 
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technique the reference mirror is stationary, but the reflected light is detected by a spec-
trometer as a detector. In swept-source OCT, the reference mirror is also stationary, but 
the OCT signal is acquired by varying the (narrowband) wavelength of the light source 
in time and by using a single detector. The depth scan can be calculated in both systems 
by Fourier transformation from the acquired spectra without movement of the reference 
arm.126, 180, 192

Interpretation of OCT is based on the anatomy and morphology of the tissue that has 
been imaged with serial optical sections. In order to use OCT in ophthalmic molecular 
imaging, one has to use a naturally occurring (endogenous) contrast agent or an exoge-
nous contrast agent. There are three approaches for molecular contrast OCT: attenua-
tion-based molecular contrast OCT, coherent emission-based molecular contrast OCT, 
and nanoparticle-based molecular contrast OCT.200

Attenuation-based molecular contrast OCT measures changes in the spectral attenu-
ation characteristics of tissue, at one point in time or over time. Light absorbance and 
scattering properties of a tissue depend on the presence of endogenous and exogenous 
contrast agents. For example, oxymetry may be performed when exploiting hemoglobin 
as an endogenous contrast agent. Near-infrared dyes with a known absorbance spectrum 
can be used as well.194 In order to reduce the effects of endogenous light scattering and 
absorbance within the sample, the spectrum of the light source may be divided into three 
equal bands, with the middle band centered around the absorbance peak of the contrast 
agent. The OCT scans taken with three bands enable an easier detection of the contrast 
agent.201 The ability to image over time allows detection of differences in the absorbance 
profile that occur when using contrast agents with a specific optically excitable transi-
tion, like methylene blue145 or phytochrome-A.201

The second approach is coherent emission-based molecular contrast OCT. In this tech-
nique, endogenous contrast agents such as fluorophores are used. These absorb incident 
light and emit light of different wavelength. Detection takes place by means of an inter-
ferometer, using either a second-harmonic OCT setup81, 152 or a setup based on coherent 
anti-Stokes Raman scattering (CARS) interferometry.17, 110, 183 A typical OCT uses the 
linear and elastic scattering properties of tissues and is thus limited to the detection of 
asymmetric structures or polarization properties of the tissue. Second-harmonic OCT 
captures a standard OCT pattern and simultaneously another pattern produced by the 
second-light harmonic light phenomenon, which is a nonlinear optical effect generated 
only by molecules that are non-centrosymmetric. This phenomenon generates biological 
images in which contrast is a function of the specimen’s molecular structure and its ori-
entation relative to the laser beam. Coherent anti-Stokes Raman spectroscopy is a form 
of spectroscopy sensitive to vibrational signatures of molecules. The molecular vibrations 
of multiple molecules are addressed by multiple photons and a signal is produced in which 
the emitted waves are coherent with one another. OCT setups with CARS interferome-
try, also referred to as vibrational spectroscopy or molecular sensitive OCT,17, 110,183 may 
be able to simultaneously image multiple molecules within a sample,200 for each specific 
molecule has a specific CARS signature.



The third approach is nanoparticle-based molecular contrast OCT, also called nanopar-
ticle-assisted optical molecular imaging (NAOMI).E An additional signal is created, ei-
ther using engineered scatterers that cause additional reflections21,  98 or magnetic par-
ticles that cause additional Doppler signals under the influence of an external magnet-
ic field.134 The concentration of the used contrast agent correlates with the size of the 
measured signal. Several particles have been proposed for this purpose, for example, 
engineered microspheres which are oil-filled spheres with shells made out of melanin, 
gold, or carbon nanoparticles with a high scattering and low absorption coefficient98 and 
smaller gold nanocages.21  Specific antibodies directed against specific molecular and 
cellular targets can be used with these microspheres and nanocages to visualize those 
targets. An OCT setup can detect changes in optical scattering arising from nanopar-
ticles.200 Recently, gold nanoshells injected in an enucleated porcine eye were visualized 
on the basis of contrast enhancement due to their engineered backscattering cross sec-
tion.E The application of NAOMI techniques to the human eye depends on the approval 
of nanoparticles as exogenous contrast agents. Thus far, these techniques have remained 
experimental. They will undoubtedly play a major role in molecular medicine in the 
future, either as drug-carrying vehicles or as exogenous contrast agents.
Considering the great progress made with introduction of OCT in clinical ophthalmic 
care, OCT could even further revolutionize ophthalmology by allowing the combination 
of cross-sectional anatomical and morphological information with specific visualization 
of molecular processes by a wide range of contrast agents, each with a specific signature 
that allow simultaneous multiple detections within a measurement. Some innovative 
OCT techniques other than scattering-based molecular contrast OCT, such as CARS 
interferometry and absorption spectrum-based molecular contrast OCT may also be 
explored to expand the use of contrast agents. 

Confocal scanning microscopy

In  vivo confocal scanning microscopy is a noninvasive imaging technique used daily 
in ophthalmic practice, usually for the imaging of ocular surface structures such as the 
cornea.95

In confocal microscopy, reflected light passes through an aperture and is focused by a 
condenser (illumination system) within a small volume of the cornea. Reflected light 
then passes through an objective (observation system) that has the same focal point as 
the condenser. Light contamination from out of focus structures is eliminated which 
results in better contrast in the images. Magnifications of approximately 600 times en-
able the examination of the cornea at the cellular level with the signals being detected 
by a charge-coupled device (CCD).16 To increase the field-of-view, current devices move 
the condenser to scan across the cornea.23 In vivo confocal microscopes require contact 
between objective and cornea, either by the use of a coupling viscous gel in between 
cornea and objective, or by direct applanation on the cornea. Currently, there are three 
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devices available, the tandem scanning confocal microscope,137 the slit scanning confocal 
microscope,117 and the HRT II Rostock Corneal Module.14 Clinically, confocal micros-
copy is already in use for differential diagnosis of corneal dystrophies, corneal structure 
examination, and visualization of infectious agents. Molecular imaging studies with this 
imaging modality have mostly been used in ophthalmology to visualize inflammatory 
cells in the cornea of small animals. Limited tissue penetration of this technique limits its 
use to superficial ocular structures. 

Multiphoton excitation fluorescence microscopy
 
Multiphoton excitation fluorescence microscopy, is a new technique that is capable of 
in vivo high-resolution imaging and functional analysis based on tissue autofluorescence, 
This technique evolved from fluorescence and confocal microscopy. Developed in order 
to increase penetration imaging depth into tissues, it is a promising technique for appli-
cation in living subjects and animals. In fluorescence microscopy, a fluorescent probe 
is used to stain and label a specific molecule or biochemical process of interest. As in 
standard light microscopy, fluorescence microscopy can only give a two-dimensional 
view. This happens because the detected fluorescence includes the emission from areas 
outside the plane of focus of the excitation light. In confocal microscopy, the presence 
of an adjustable pinhole aperture in front of the detector guarantees that only fluores-
cence from the focusing plane is detected, and all superfluous fluorescence is neglected. 
A three-dimensional view is created by moving the plane of focus up and down through 
the specimen. These systems require an intense light source for excitation because a 
significant amount of fluorescence is neglected, bringing forward the problem of photo-
toxicity and fluorophore bleaching.77 In 1990,34 a new technique derived from fluores-
cence and confocal microscopy was described: two-photon excitation microscopy. This 
relies on the simultaneous absorption in a single quantitized event of two near-infrared 
photons in the spectral range of 800–1200 nm after an infrared beam is focused on the 
specimen.77, 140, 154 The probability that two photons are simultaneously absorbed by a 
molecule of the fluorophore is substantially increased due to the high concentration of 
photons at the focal plane. The photoxicity and fluorophore bleaching that can occur in 
confocal microscopy is reduced in two-photon excitation microscopy because excitation 
takes place only at the plane of focus. This feature, combined with the high penetration 
depth of the stimulating light beam because of the long infrared wavelengths of light 
used, has allowed imaging of live tissues and even of whole animals over extended peri-
ods of time. A pinhole aperture is not required in this technique because excitation and 
emission occur at the focal plane only—or in other words, fluorescence is generated at 
the focal plane only.77,140 This enables the detection of more scattered emitted light, thus 
improving the signal-to-noise ratio at the expense of a lower spatial resolution when com-
pared to confocal microscopy. To achieve better spatial resolution, a descanned detector 



with an aperture placed in front can be used, which at the same time will decrease signal 
intensity. In order to image biological structures with subcellular resolution, two types of 
signals can be used: fluorescence and second-harmonic generation. Whereas the former 
is used to monitor the dynamic behavior of the chemical components of tissues, the lat-
ter is a novel way to study the spatial organization of different tissues. When imaging a 
specimen, and in particular the eye, one needs to account for intrinsic autofluorescence 
of tissues.
Multiphoton excitation fluorescence microscopy shows promise for application in hu-
mans and animals. Several clinical applications using this imaging technique are cur-
rently being explored.31, 43, 203 In ophthalmic research, two-photon microscopy has proved 
valuable in the understanding of structure, metabolism, and signal transduction in the 
eye. The infrared illumination makes it ideal to visualize endogenous fluorophores pres-
ent in the retinal pigment epithelium. For example, Palczewska et al used multiphoton 
excitation fluorescence microscopy to target retinosomes in retinal pigment epithelium 
and other fluorophores present in eyes of aging mice.135 Another study with possible ap-
plication in living animals explored the use of two-photon microscopy to obtain images 
of the trabecular meshwork in enucleated mouse eyes after labeling of blood vessels by 
fluorescein-conjugated dextran. The authors were able shows promise non-invasively to 
visualize structures relevant to aqueous flow in these mice, and further studies are on-
going to extrapolate the technique to living animals.82 Two-photon microscopy can also 
be used for studies of the architecture of the cornea and lens. For example, analysis of 
two-photon–generated second harmonic signals originating from the collagen fibers of 
the corneal stroma identified three stromal layers with different patterns of fiber pack-
ing.121 Collagen architecture studies at the level of the cornea are indeed one of the first 
in  vivo applications of two-photon microscopy since it does not require any artificial 
labeling of the specimen.77

In summary, two-photon microscopy has so far led to major advances in the under-
standing of retinoid processing in the retina, visualization of important structures af-
fected in glaucoma, and collagen organization in the cornea. Most studies have been 
performed in vitro and/or ex vivo. As stated before, it is expected that this technique will 
be extrapolated to clinical research and to clinical use as a molecular imaging device. 
Imaging of the retina and retinal pigment epithelium by two-photon microscopy would 
be a major breakthrough in the care of patients afflicted with retinal neurodegenerative 
diseases. Two limitations need to be overcome in order to achieve this. The human eye 
is an optically distorted structure, and this greatly influences the efficacy of two-photon 
excitation. Another issue is the large distance between the anterior and posterior pole of 
the eye, which limits the numerical aperture of the fundus ophthalmoscope for human 
eyes.77
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Radionuclide imaging

Radionuclide imaging techniques (PET and SPECT) utilize radiopharmaceuticals to 
probe a specific protein, usually an enzyme or a receptor. The enzyme or receptor to 
be targeted can be expressed either intracellularly or extracellularly. Intracellular pro-
teins are not recognized by the immune system. The major advantages of targeting sur-
face-expressed receptors and enzymes are better controllable kinetics (because the tracer 
does not have to penetrate into cells) and the fact that synthetic receptors can be engi-
neered to recognize approved imaging probes such as pertechnetate.186

PET imaging utilizes positron-emitting isotopes. These positrons annihilate nearby elec-
trons, emitting two photons at an angle of 180° of each other. These photons are then 
detected by the scanner based on coincident collisions in the detector. Radioisotopes 
include C11, N13, O15, F18, Cu64, Cu62, I124, Br76, Rb82, and Ga68. F18 is the most often used 
PET radiopharmaceutical. One of the major disadvantages of PET is that the radiotrac-
ers must be made with a cyclotron. Because each of these radionuclides has a half-life of 
minutes to hours, the cyclotron has to be in close proximity to the imaging facility. This 
significantly increases the costs of PET radionuclides. Because PET imaging relies on 
physiological or biochemical phenomena of disease processes, it retains many advantag-
es when compared with anatomic imaging modalities such as MRI and CT scan and is 
used extensively in oncology for its ability to distinguish malignant from benign lesions 
where other imaging modalities fail to do so.F It is more sensitive than SPECT, capable 
of detecting probes in picomolar concentrations.143

SPECT uses gamma-ray emissions to generate images. The imaging agent used in 
SPECT decays and emits non-coincident gamma rays, as opposed to the coincident 
gamma rays associated with positron emitters (such as F18) used in PET. There is a range 
of radiotracers (such as Tc99m, In111, I123, Tl201) that can be used in SPECT, depending on 
the specific application. Radiotracers for SPECT are long-lasting, thus making the appli-
cation of SPECT more economic than that of PET. Another major advantage of SPECT 
imaging over PET imaging is that it can potentially allow for concomitant imaging of 
multiple radionuclides.
Radionuclide imaging techniques have been used to study alterations in cortical activity 
secondary to ophthalmic diseases, but never in direct imaging of the eye with the excep-
tion of uveal melanoma detection with N-isopropyl-p-123I-iodoamphetamine SPECT.83

Magnetic resonance imaging

Magnetic resonance imaging is based on the phenomenon of alignment of unpaired nu-
clear spins, called magnetic dipoles, when placed into a magnetic field. A magnetic field 
surrounding the subject under investigation is produced by a strong magnet located in 
the MRI scanner. “Coils” within the magnet produce a gradient in the magnetic field in 
the x, y, and z directions. The magnet also contains a radiofrequency coil that can pro-



duce a temporary radiofrequency pulse to change the alignment of the spins. Following 
the pulse, the magnetic dipoles return to their baseline orientation, which is detected 
(also by the radiofrequency coil) as a change in electromagnetic flux. An important func-
tion of the scanner is to determine the rate at which these dipoles relax to their baseline 
orientation. This measurement is translated into a MRI signal. Dipoles such as water 
molecules have different relaxation times in different physicochemical environments, 
and thus generate different MRI signals and subsequently image contrast.116 The two 
most frequently used timing parameters are known as  T1  and  T2  weighting.  T1  is the 
longitudinal relaxation time. It indicates the time required for a substance to become 
magnetized after first being placed in a magnetic field or, alternatively, the time required 
to regain longitudinal magnetization following a radiofrequency pulse. T1 is determined 
by thermal interactions between the resonating protons and other protons or other mag-
netic nuclei in the magnetic environment. These interactions allow the energy absorbed 
by the protons during resonance to be dispersed to other nuclei in the magnetic envi-
ronment. T2 is the “transverse” relaxation time. It is a measure of how long transverse 
magnetization lasts in a perfectly uniform external magnetic field. Alternatively, it is a 
measure of how long the resonating protons remain coherent or rotate “in phase” follow-
ing a 90° radiofrequency pulse. T2 decay is due to magnetic interactions that occur be-
tween spinning protons. Unlike T1 interactions, T2 interactions do not involve a transfer 
of energy but only a change in phase, which leads to a loss of coherence.C

Variations on standard MRI techniques for greater functional analysis include diffu-
sion-weighted MRI, which exploits the translational mobility of water molecules to ob-
tain information on the microscopic behavior of tissues (presence of macromolecules, 
presence and permeability of membranes, equilibrium of intracellular–extracellular 
water) and perfusion-weighted MRI, which uses endogenous and exogenous reporter 
probes for monitoring their hemodynamic status.116

Magnetic resonance imaging and its variants have been used in pre-clinical ophthalmic 
research (Table 1). Oxygenation studies have been performed with MRI using the para-
magnetic properties of oxygen (O2), which produces contrast (i.e., increased signal inten-
sity) on a T1-weighted image. Ion activity may also be studied by manganese-enhanced 
MRI. Manganese is a heavy metal that serves as a paramagnetic contrast agent as a 
surrogate marker of calcium ion flux. Blood–retinal barrier permeability and transfer 
studies have also been performed by MRI.
Magnetic resonance imaging, noninvasive not affected by media opacities such as cata-
ract, is able to simultaneously survey the entire two-dimensional retinal surface. Howev-
er, spatial resolution is rather low.94 Furthermore, ocular oxygenation studies using this 
technique only measured indirect values of partial pressure of O2 in the vitreous body 
and not directly at the level of retinal tissue.
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Computed tomography

Computed tomography generates 3D images based on a large series of two-dimensional 
X-ray images taken around a single axis of rotation.20 Lack of target-specific contrast 
agents preclude its use in molecular imaging. Its main advantage is the ability to provide 
an excellent spatial resolution in the sub-millimeter range, which can be of interest as 
complementary to PET systems. In theory, several obstacles need to be surmounted to 
enable the use of CT in molecular imaging. Specific CT-based probes to image biolog-
ical processes have to be iodinated (or tagged with another high-atomic-number atom 
that absorbs X rays). Moreover, site-specific accumulation of large quantities of such 
probes have to be possible in order to detect differential attenuation of X rays that reflect 
the biological process in question.116 Development of new CT contrast agents and hybrid 
devices that combine PET and SPECT may well attribute a role to CT in medical mo-
lecular imaging.19

 
 
Ultrasonography

Ultrasonography is the most widely used clinical imaging modality because of its low 
cost, availability, and safety. Ultrasound images are obtained when high-frequency sound 
waves are emitted from an acoustic transducer placed on the skin and the ultrasound is 
reflected by the internal organs that are examined. Contrast in the images depends on 
the imaging algorithm used, backscatter, attenuation of the sound, and speed of sound. 
Development of microbubble contrast agents and higher-resolution ultrasound devices 
will likely render ultrasonography to be a feasible technique for molecular imaging in 
ophthalmology in the near future.20, 116

Molecular imaging applications in ophthalmology 
Apoptosis

Apoptosis, or programmed cell death, occurs in ophthalmic diseases such as inherited 
retinal degenerations, diabetic retinopathy, age-related macular degeneration, patholog-
ic myopia, retinal detachment, and glaucoma.3, 4, 29, 40, 48, 84, 142, H Objective and quan-
titative noninvasive imaging of apoptosis in living human eyes would be a significant 
advancement in the diagnosis of eye diseases as well as in the follow-up of local effects of 
experimental therapeutic agents.
Apoptosis in the eye has been experimentally imaged by targeting caspases, proteases 
that always have been considered to drive the apoptotic cascade. Absolute involvement 
of caspases in apoptosis has become controversial,36, 37, 38, 104 however, suggesting that 
induction of apoptosis can occur independently of caspase activation.36, 37, 38

One of the most frequently used markers for identification of apoptosis in vivo and in vi-



tro is extracellular expression of annexin 5. Annexin 5 becomes externalized during the 
early stages of apoptosis before nuclear condensation and DNA fragmentation occur, 
and binds to phosphatidylserine, an anionic phospholipoid enriched in plasma mem-
branes.12, 14, 39, 125, 206, H Extracellular expression of annexin 5 is related to caspase-acti-
vated apoptosis and, accordingly, cells that express annexin 5 extracellularly are also 
labeled when using anti-active-caspase 3 antibodies.18, 96, 99, 111, 112, 113, 114, 170, 181

An experimental study using fluorophore-labeled anti-annexin 5 in rats demonstrat-
ed that retinal ganglion cells undergoing apoptosis can be imaged in vivo.D Neuronal 
apoptosis was induced by different mechanisms such as administration of hypertonic 
saline in the episcleral veins of rats, thus resulting in an increase in ocular pressure by 
transection of fibers of the optic nerve to induce trans-synaptic degeneration of retinal 
ganglion cells, and by intravitreous administration of staurosporine, a nonselective 
protein kinase inhibitor that rapidly and extensively induces neuronal apoptosis. Imag-
es were acquired with a modified confocal SLO to detect the emitted fluorescent light. 
Single cells undergoing apoptosis in the rat eye were visualized.D This technique is 
called DARC (detection of apoptosing cells) and has proven to be useful for the assess-
ment of the effects of neuroprotective measures in glaucoma.56 The Heidelberg retinal 
angiograph was also used successfully to detect apoptosis in retinal ganglion cells in 
mice. Therefore, this approach may become available in the future to detect apoptosis 
of retinal ganglion cells in patients.109

Similar methodology has been used to identify apoptosis in retinal cells from the inner 
nuclear layer and ganglion cell layer of rat eyes after thermal damage due to laser ex-
posure with high-intensity light.156 Dose-dependent apoptosis and the extent of retinal 
damage were established quantitatively in vivo in relation to laser exposure. The size 
of the lesion induced by the laser correlated with the amount of apoptotic retinal cells 
showing the importance of controlling lesion size during laser treatment of the reti-
na.156

It may be argued that these studies do not demonstrate photoreceptor apoptosis but 
rather photoreceptor necrosis and cell death. Short periods of image capturing may 
not assess apoptosis because apoptosis induction occurs over an extended period of 
time.156 Although extracellular annexin 5 expression is generally considered to be an 
early marker of apoptosis,15, 94 it may not distinguish between necrotic cells and apop-
totic cells in vivo because they both express annexin 5.155 Reduced laser light intensity 
and longer exposure times are required to investigate whether confocal SLO can visu-
alize real-time in vivo apoptosis in photoreceptors.

Oxygen homeostasis

The serious consequences of hypoxia or hyperoxia in the eye underline the importance 
of the development of molecular imaging methods to visualize and quantify the occur-
rence of these phenomena in the eye in a noninvasive manner. Oxygen homeostasis is 
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crucial for the metabolically most active tissue in the human body; the retina. Oxygen 
is needed for ATP production, regulation of membrane transport,51 intracellular signal-
ing,106gene expression,50, 158 and initiation of apoptosis.21, 24 Among the unique features 
affecting retinal oxygenation are the low oxygen tension at the level of photoreceptors, in 
particular during dark adaptation, the presence of a dual circulation, lack of metabolic 
regulation of the choroid, oxygen regulation of the retinal circulation, and the presence 
of large amounts of mitochondria in the photoreceptor inner segments.2, 184

Oxygen gradients can be measured in vessels (point of supply) or in tissue (point of con-
sumption). Measurements of retinal perfusion by means of vessel caliber assessment, 
video fluorescein angiography, laser Doppler flowmetry and velocimetry, color Doppler 
ultrasound, and ocular pulse measurement all have limitations such as inability to quan-
tify such measurements, the limited spatial resolution and sensitivity, and inter-patient 
differences like corneal opacity or presence of cataract.176 Fluorescein angiography, cur-
rently the standard technique to assess capillary non-perfusion and consequently local 
ischemia and hypoxia in the retina, remains an invasive procedure that is unpleasant for 
the patient, time consuming, and prone to adverse reactions. In addition, it is an indirect 
method to assess ocular oxygen homeostasis. Molecular imaging methods aim at the 
visualization and quantification of oxygen in a direct manner, using oxygen and oxygen-
ated hemoglobin as naturally occurring endogenous chromophores.
At present, four methods are available for molecular imaging of oxygen homeostasis: 
MRI-based methods, methods based on phosphorescence, multispectral retinal imaging 
techniques, and attenuation-based OCT. Only multispectral retinal imaging techniques 
have been successful in noninvasive retinal oximetry in human patients, whereas other 
techniques have been applied to small animals. OCT-based techniques have not thus far 
in provided in vivo oxygenation measurements. Nevertheless, theoretical principles of 
this approach are briefly discussed here as well.
MRI-based oximetry methods rely on the paramagnetic characteristics of oxygen, a chromo-
phore that produces contrast in a T1-weighted image. Changes in oxygen signal intensity 
in the vitreous, measured under normoxic and hyperoxic conditions, can be mapped 
as a reflection of the vitreous partial oxygen pressure. The recording is carried out in 
the pre-retinal vitreous which has been shown to reflect oxygen levels in the inner reti-
na.103, 184  Measurements are expressed as differences between intensities recorded during 
normoxia and hyperoxia.8, 9,13, 78, 147, 148, 204

Pre-retinal oxygen pressure can also be measured by fluorine-19 magnetic resonance 
spectroscopy when a perfluorocarbon droplet is instilled and placed on the surface of the 
retina via a minimally invasive needle. This approach has been applied to pre-clinical 
models and to a single vitrectomized human eye.1,  60,  198,  199,  204,  205 Measurements can 
only be performed within the limited area of the droplet instillation. Nevertheless, this 
technique remains interesting because it can measure oxygen pressure where other tech-
niques cannot, such as in eyes of newborn rats, mouse eyes, and eyes that do not have 
clear optical media.187, 204, 205

Phosphorescence oximetry methods are based on the principle that oxygen is the only molecule 



in blood that can quench an excited phosphorescent molecule.202 The decay time de-
pends on the concentration of oxygen in the vicinity of molecules with phosphorescence 
properties. Thus, intravascular oxygen pressure can be deduced from measurements of 
these quenching effects.167 Measurements of retinal oxygen pressure and consumption 
and retinal vascular oxygen pressure have been performed with this approach in a num-
ber of studies.19, 47, 127, 147, 150, 159, 160, 161, 163, 165, 166, 167, 168, 190, 191, 207

Shahidi et al167, 168, 169, 170 described a method in which images of vascular layers equally 
displaced in depth were constructed by segmentation in combination with phosphores-
cence images acquired from adjacent areas in the retina of mice that were administered 
an oxygen-sensitive probe. A modified SLO with an infrared barrier filter installed with 
transmission overlapping the phosphorescence emission of the probe in the light path 
was used. By projecting a narrow focused laser beam at 532 nm at an oblique angle 
on the retina after intravenous injection of the probe, a phosphorescent optical section 
is acquired from the retina. Phase-delayed images were analyzed to generate oxygen 
pressure maps of the vasculature at different levels in the retina, and thus to differentiate 
phosphorescence of the retina from the choroid.162 This method provided oxygen pres-
sure measurements in retinal capillaries, which depict more correctly the oxygenation 
status of the retina than measurements in large retinal vessels. More recently, oxygen 
pressure in retinal tissue of rats was measured using a similar approach.161 Limitations 
of these techniques include the risk of producing toxic oxygen free radicals, the lack of 
discrimination of signals being emitted either from the retina or choroid, and the quality 
of the acquired images.
Retinal multispectral oximetry imaging devices detect differences in light absorbance at a given 
wavelength between oxygenated and reduced hemoglobin.33, 66 By measuring the vari-
ation in reflection in relation with the wavelength, information about the relative con-
centrations of the two forms of hemoglobin in vessels and capillaries can be deduced. In 
retinal oximetry with multiple wavelength reflectance oximeters, images are captured at 
two isosbestic wavelengths, at wavelengths where light absorbance by oxygenated and 
reduced hemoglobin is the same and at a wavelength above 650 nm at which tissue scat-
tering dominates.80Multispectral retinal cameras scan the retina at multiple wavelengths 
at regular intervals. Measuring the optical density of retinal blood vessels (i.e., the at-
tenuation of retinal blood vessels at several discrete wavelengths) gives a measurement 
of the oxygenation status of the retina. The absorbance at a retinal location is obtained 
by calculating the ratio of the measured reflected light intensity adjacent to the target 
retinal vessel relative to the reflected light intensity at the center of the retinal vessel. 
The oxygenation status of the retinal blood vessel can then be calculated after analyz-
ing the absorbance at various wavelengths.120  Other research groups have built their 
own systems in order to measure oxygen saturation in retinal blood vessels, all apply-
ing the same principles as described earlier. Mordant et al recently published a review 
on this topic.120 Retinal oximetry with these imaging devices has been used to assess the 
oxygenation status of human retinal vessels and/or retinal tissue in diabetic retinopa-
thy,65, 123, 131, 173 glaucoma filtration surgery,62 central retinal vein occlusion,64, 202  primary 
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open angle glaucoma,133 dark adaptation,61  therapy response,175 neurogenic optic atro-
phy,157 and hyperoxia.63 The use of retinal vessel oximetry in clinical care is still limited 
because there is no direct correlation with vessel oximetry and oxygenation status of 
retinal tissue. Retinal tissue oxymetry is confounded by the effects of the choroidal vas-
culature, which can have a considerably different oxygen tension value than the retina.
In order to reduce the long recording times of multispectral imaging cameras, a multi-
spectral imaging device has been developed.52, 120, A This device has a shorter light expo-
sure time than conventional retinal multispectral imaging devices, which makes it more 
patient-friendly and less prone to changes induced by cardiac activity and eye motion. 
The key component is an image replicating imaging spectrometer that uses polarizing 
interferometry and Wollaston prism polarizing beam splitters simultaneously to replicate 
images of the retina in multiple spectral bands onto a single detector array. The output 
image is spectrally demultiplexed into eight narrow-band images recorded on a cooled 
CCD detector array.52, 120, A

Attenuation-based molecular contrast OCT oximetry techniques  measure oxygen saturation in 
blood on the basis of scattering properties of erythrocytes and the refractive indices of 
oxygenated hemoglobin and reduced hemoglobin. Oxygen saturation dependent scat-
tering properties of whole blood were recently reported.44In vitro experiments demon-
strated a saturation-dependent attenuation coefficient in the OCT signal at 780 and 
820 nm.45 This principle can be applied to calculate oxygen pressure gradients in retinal 
tissue and vessels. When applying this principle in in vivo experiments, Doppler shifts 
need to be taken into account in larger vessels.45 Optical coherence tomography seems 
to retain the advantage of operating independently of variations in fundus pigmentation 
and vessel diameters which could be a major advantage when applied in the clinical 
practice.

Ocular immune responses

The eye is functionally very sensitive to structural alterations. Even minimal inflamma-
tory processes can result in optical distortion, which leads to impaired vision. The so-
called immunologic privilege of the eye, however, limits tissue damage, but is at times not 
complete. Molecular imaging techniques have not been used thus far for the assessment 
of the ocular immune response in humans. Some of the techniques that may be of inter-
est for application to human eyes in the future are in vivo confocal scanning microscopy 
for the anterior segment and SLO and retinal multispectral imaging for the posterior 
segment. Thus far, these molecular imaging techniques have been used for the analysis 
of interactions between cells that play a role in the ocular immune response of small 
animals.6, 22, 25, 30, 42, 58, 97, 119, 172, 193, 195, 196, 197, 198

Molecular imaging techniques can also be used to analyze the dynamics of phagocytic 
cells such as microglia cells, macrophages, as well as dendritic cells in the eye. Macro-
phages and resident dendritic cells play a major role in the immunological response of the 



eye. Macrophages are known to generate tissue damage in response to ischemia-induced 
retinopathy and experimental autoimmune uveitis. These phagocytic cells are involved 
in tissue remodeling, release toxic mediators and remove cellular debris. Microglia cells 
have been shown to be involved in the inflammatory response of the eye but their exact 
role as immune cells is not known. Dendritic cells play a crucial role in the induction 
of adaptive immune responses and their presence in ocular tissue has been shown by 
histology and immunohistochemistry. Their precise role in the healthy and diseased eye 
has not yet been resolved due to the lack of adequate experimental systems to study these 
cells. Under physiological conditions, dendritic cells may promote the maintenance of 
the immunologic privilege of the eye by preventing the activation of T-cells.
Intravital microscopy has been used to visualize and characterize inflammatory cells 
that migrate into the corneal stroma during keratitis. For that purpose, mice were gener-
ated that expressed GFP in their hematopoietic cells. Keratitis was induced by adminis-
tration of endotoxin. The dynamics of GFP-expressing inflammatory cells were studied 
by real-time in vivo imaging using a fluorescence microscope.22 The same approach was 
used after application of silver nitrate to induce chemical injury to the cornea.172 In both 
studies, a pattern of fast centripetal migration of inflammatory cells was detected under 
these stress conditions.
The dynamic behaviour of corneal dendritic cells including Langerhans cells, which are 
antigen-presenting cells, was studied in the cornea of transgenic mice that expressed en-
hanced yellow fluorescent protein under the control of the promoter for CD11c. The cell 
surface marker CD11c is expressed specifically on mouse dendritic cells and thus allows 
us to differentiate these cells from macrophages. These studies showed decreased mi-
gration of these cells upon injury with endotoxin or microspheres.97 Ovalbumin-specific 
T-cells have been imaged in vivo during interactions with ovalbumin-bearing corneal 
cells.172

The iris is also an immunologically privileged compartment. Immune-mediated diseas-
es in the iris have been studied in a murine model of experimental ovalbumin-induced 
uveitis. Trafficking and intercellular interactions between fluorescently labeled dendritic 
cells and macrophages were characterized by means of intravital microscopy.6 Further-
more, the endogenous immune response in the iris of endotoxin-induced uveitic rats was 
quantified using carboxylated fluorescent microspheres conjugated with recombinant 
P-selectin glycoprotein ligand-1. The interactions between this ligand and P-selectin ap-
peared to be a crucial step in the process of leukocyte rolling along vessel walls that was 
triggered during early stages of inflammation. Visualization by intravital microscopy 
and SLO of the adhesion between the microspheres and the endothelium showed in-
creased leukocyte adhesion in uveitis.193

Leukocyte dynamics in the retina have been imaged using calcein-AM-labeled leuko-
cytes with a SLO, after induction of uveoretinitis.30, 195, 196, 197, 198 Rolling of leukocytes 
in blood vessels in the retina of rats has also been visualized by SLO in an experimental 
model of autoimmune uveoretinitis after staining with acridine orange.58

Endothelial expression of P-selectin and assessment of endothelial injury during uveitis 
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can be imaged in vivo in the choriocapillaris by SLO after administration of fluorescent 
microspheres conjugated to recombinant P-selectin glycoprotein ligand-1. This complex 
is tolerated in humans and thus it may be used for clinical application in the future. This 
approach could be of interest for early detection of endothelial changes in a vast array of 
ocular diseases, in particular uveitis.119

Phagocytic cells such as microglia cells, macrophages and dendritic cells express the 
fractalkine receptor (CX3CR1) and thus can be made fluorescent by replacing one copy 
of the constitutively expressed CX3CR1 gene by GFP, while leaving the promoter in-
tact.26, 46, 49, 129, 171 Dynamics of microglia cells, dendritic cells, and macrophages were 
visualized in the retina of heterozygous CX3CR1GFP/+ mice using SLO. Argon laser co-
agulation was applied to the fundus and the response of mononuclear phagocytes to 
laser injury of the fundus was followed. It appeared that the number of microglia cells in-
creased after laser injury to the retina, whereas macrophages and granulocytes remained 
for longer periods of time in the choroid infiltrate.42

 

Microscopic retinal structures and cells

In vivo imaging of the dynamics of cells has increased our understanding of mechanisms 
of retinal diseases. Using SLO and adaptive optics, microscopic retinal structures can be 
imaged in human eyes, such as retinal pigment epithelial cells in patients with cone–rod 
dystrophies and bilateral progressive maculopathy, cone photoreceptors,115 flow of single 
leukocytes in blood vessels,115 and the lamina cribrosa.182 Fundus cameras with adaptive 
optics systems can also visualize cone photoreceptors in patients with retinal dystrophies 
and optic neuropathy.26,  27  These approaches are not regarded as molecular imaging 
techniques per se. The structure of the region of interest in the eye can also be informa-
tive, however, such as the finding that neurodegeneration in retinal ganglion cells occurs 
at a very early stage in patients with minimal diabetic retinopathy. Ganglion cell layer 
thickness measurements was made possible after automated segmentation of SD-OCT 
scans of human patients with diabetes.177, 178

For the visualization of retinal ganglion cells, molecular imaging techniques and fluo-
rescent markers have been used. To investigate neurodegeneration in retinal ganglion 
cells and to assess the effect of potential neuroprotective measures against this process, 
imaging and subsequent evaluation of living retinal ganglion cells is indispensable. In 
experimental animals, retinal ganglion cells, dendrites, and amacrine neurites have 
been simultaneously imaged over time by means of SLO. Retinal ganglion cells were 
made fluorescent by expression of the cyan fluorescent protein under the control of a 
Thy-1 promoter, a marker for retinal ganglion cells.100 Retinal ganglion cells were also 
visualized in retinas of rats after retrograde labeling with the fluorescent dye 4-(4-(di-
hexadecylamino)styryl)-N-methylpyridinium iodine administered in the superior col-
liculus.69 Calcium-sensitive dyes were applied in a similar way and numbers, dynamic 
changes, functional activation, and connectivity of retinal ganglion cells were studied 



after optic nerve injury.141, 151

Primates and fish have also been used to study vision-related microscopical structures. 
Fluorescent images of primate retinal ganglion cells were acquired with an adaptive 
optics SLO after administration of rhodamine dextran in the lateral geniculate nucle-
us.53 In vivo visualization of cell–cell interactions in retinas of zebrafish enabled the study 
of neural circuit formation and especially targeting of synaptic strata by retinal ganglion 
cells within the inner plexiform layer, the dendritic growth and arborization pattern of 
retinal ganglion cells and the role of the amacrine plexus in the processing of the neu-
ral circuitry.122  In addition, goldfish have been used to study axonal growth plasticity 
after optic fiber targeting by fluorescent carbocyanine dye 1,1′-dioctodecyl-3,3,3′,3′-te-
tramethylindocarbocyanine perchlorate and image acquisition with a fluorescence mi-
croscope.32

Transplanted cells

Stem cell therapy in degenerated retinas to restore function of the neurosensory retina 
poses a number of challenging issues such as the generation of appropriate stem cells for 
transplantation, the technical aspects of transplanting cells into a degenerating retina, 
and restoration of visual function. Molecular imaging has already been used for the visu-
alization of transplanted stem cells in the retina. Bone marrow–derived lineage-negative 
GFP-expressing hematopoietic stem cells were administered in the vitreous of mice and 
visualized in the retinal vasculature by SLO as proof of principle.146

Ion activity

Ion activity plays a role in photoreceptor transduction, neuronal transmitter release in 
the retina, regulation of gap junction conductance, modulation of postsynaptic poten-
tials in retinal ganglion cells, and light and dark adaptation.
Magnetic resonance imaging is the modality of choice when performing studies of ion 
activity. Manganese-enhanced MRI can be used to study calcium ion flux in eyes. Af-
ter intraocular or systemic administration, manganese accumulates in the retina and 
optic nerve, serving as a surrogate marker of calcium ion flux. Calcium sequestration 
and release by mitochondria represented by manganese ions change signal intensity on 
a T1-weighted image. The uptake of manganese is dependent on ion activity in the retina 
in relation to light/dark adaptation, Na+/K+ ATPase activity and L-type calcium chan-
nels. One of the potential clinical applications of this technique is the monitoring of pro-
gression of retinopathy.9 Because manganese highlights the optic nerve, this technique is 
also suitable for studies of optic nerve transport.57

Other approaches based on molecular imaging of ion activity have been applied to study 
diffusion in the eye and to calculate water flow.91,  132 Contrast-enhanced proton MRI 
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has been used to investigate plasma-derived protein diffusion into the aqueous humor. 
The contrast agent gadopentetic acid (Gd-DTPA) containing gadolinium was adminis-
tered in rabbits and monkeys and subsequent analyses of T1-weighted images allowed the 
demonstration of diffusion from the stroma of the ciliary body to the anterior chamber 
across the iris root.91 Water movement in rat eyes has been assessed by means of in vivo 
deuterium MRI after intraperitoneal administration of deuterated saline. Deuterium 
oxide is a freely diffusible tracer to study blood flow and tissue perfusion. Analysis of 
differences in signal intensity over time allowed the calculation of the flow rate of water 
in the rat eye.132

 
 
Neural visual response

Positron emission tomography has been used to show degenerative changes occurring in 
the occipital visual cortex and lateral geniculate nucleus as a consequence of experimental 
glaucoma. 2-[19F]fluoro-2-deoxy-glucose and [11C]PK11195 were the radio-isotope labeled 
imaging probes. The degenerative changes were manifest upon visual stimulation of one 
eye affected with active hypertensive glaucoma whereas the other was used as control. 
Glaucoma translated in significantly reduced neural responses of the occipital visual cor-
tex ipsilateral to the affected eye. Studies with [11C]PK11195 revealed selective accumu-
lation of activated microglia in the lateral geniculate nuclei of both hemispheres which is 
indicative for neural degeneration.76 Occipital visual cortex responses were also assessed in 
patients with external ophthalmoplegia using Tc-99 m hexamethylpropylene amineoxime 
brain SPECT imaging.55

Restoration of the capacity to detect light in degenerated retinas may involve ectopic ex-
pression of light-sensitive proteins, such as channelrhodopsin-2. Manganese-enhanced 
MRI was used to determine non-invasively retinal uptake of manganese as a biomarker 
of channelrhodopsin-2-mediated activity. Mice expressing a fusion protein of channelrho-
dopsin-2 and GFP were assessed to construct a map of manganese uptake. It appeared 
that manganese uptake in the retina was elevated in channelrhodopsin-2-GFP-expressing 
mice.79

Axonal and myelin damage in mouse models of optic nerve injury can be demonstrated 
by measurements of water diffusion parallel or perpendicular to the axonal tracts of the 
optic nerve using diffusion MRI. Demyelinization did not alter water diffusion parallel 
to the axonal fibers but water diffusion perpendicular to the axonal fibers was increased, 
whereas axonal injury caused increased water diffusion in both directions. These princi-
ples were used to differentially assess axonal and myelin damage in the optic nerve after 
injury caused by retinal ischemia and autoimmune encephalomyelitis.199



Blood–retinal barrier permeability

Loss of function of blood–retinal barrier due to endothelial cell dysfunction results in 
vascular leakage.155Subsequent development of macular edema is one of the major causes 
of visual loss and blindness.88Fluorescein angiography is the standard method to assess 
integrity of the blood–retinal barrier in humans. This technique uses fluorescein as tracer 
after systemic administration. An angiogram is obtained by imaging fluorescence emitted 
after illumination of the retina with blue light at a wavelength of 490 nm. The technique, 
however, can cause serious complications and even death of the patient. Furthermore, flu-
orescein angiography is not a quantitative method and cannot detect subtle dysfunction of 
the blood–retinal barrier or distinguish increased permeability for compounds that have a 
different molecular weight than fluorescein. In addition, a distinction between dysfunction 
of the inner or outer blood–retinal barrier is difficult or impossible.
Ocular fluorophotometry is a semi-quantitative blood–retinal barrier evaluation method 
which was developed in the 1980s. An advantage of this method is that both excitation 
and detection devices share a single mobile optical element, which allows for continuous 
fluorescence measurements along a straight line extending from the center of the cornea 
to the center of the posterior pole.144

A fluorescence optical imaging technique, fluorescence-mediated tomography, was used 
to assess experimental breakdown of the blood-retinal barrier in transgenic diabetic mice 
overexpressing insulin-growth factor 1 (IGF-1) which induces vascular alterations as may 
also be the case in human diabetic retinopathy. Breakdown of the blood–retinal barrier 
was assessed in a similar way as in fluorescein angiography using Cy5.5 as dye for the 
tracer studies. After administration of Cy5.5, intense fluorescence signal was found in the 
IGF-1 transgenic mice.67 In vivo tomography of fluorescent tracers proved to be a reliable, 
safe, and fast method to assess permeability alterations in the blood–retinal barrier of 
small animals. The resolution of fluorescence-mediated tomography is, however, too low 
for this technique to be considered in humans.
Changes in vascular permeability have also been assessed in diabetic rats by dynamic 
contrast-enhanced MRI using Gd-DTPA as contrast agent. Passive permeability of the 
blood–retinal barrier was increased in diabetic rats and in VEGF-treated rats. Blood–ret-
inal barrier disruption causes extravasation of Gd-DTPA to the vitreous directly affecting 
the surrounding proton spin-lattice relaxation rate ([T1]

−1). This triggers changes in signal 
intensity on T1-weighted images that can be used to calculate passive blood–retinal barrier 
permeability.11 Dynamic contrast-enhanced MRI methods are promising for the assess-
ment of blood–retinal barrier permeability status both in pre-clinical and clinical studies.
The blood–retinal barrier is a biological barrier that often limits drugs to reach therapeu-
tic levels in ocular tissues. Therefore, one of the goals of blood–retinal barrier permeability 
studies is to investigate the enhanced delivery of drugs or genes to ocular tissue compart-
ments. Delivery of nanoparticles containing the fluorescent marker rhodamine over the 
blood–retinal barrier has been investigated as well. Different nanoparticle formulations 
were injected and the fluorescence signal was imaged using a SLO.141, 151
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Retinal gliosis

Glial fibrillary acidic protein (GFAP) is expressed by astrocytes and Müller cells, the major 
glial cell types in the retina. Increased amounts of GFAP are produced in retinopathies 
such as retinal gliosis. Retinal gliosis has been quantified in transgenic mice expressing 
GFP under the control of the GFAP promoter after treatment with the excitatory neuro-
toxic agent kainic acid to induce gliosis. Gliosis in the retina was determined by SLO im-
aging and by measuring the expression of the GFAP-GFP. Intensity of the GFP fluorescent 
signal correlated with glial cell activity.71 The same method was used for quantification of 
retinal gliosis development in time in response to diabetic retinopathy. Reactive retinal 
gliosis appeared to occur in early stages.95

Pharmacokinetics

Molecular imaging approaches using MRI or PET as imaging modalities are frequently 
used to monitor drug delivery, pharmacokinetics, drug distribution, and elimination in 
the various tissues including ocular tissues.
Iontophoresis has been used to improve drug delivery across membranes with the assis-
tance of an electric field. In the eye, a drug-containing electrode is placed on the surface 
and a second electrode is placed on another body surface. Assessment of the electrical 
current and the sites of drug delivery in the eye was performed by manganese-enhanced 
MRI. T1-weighted images showed that for transscleral iontophoresis the probe ion was 
transported directly into the vitreous under the electrode whereas for transcorneal ion-
tophoresis the site of delivery proved to be the anterior chamber.102

The frequently used MRI contrast agent Gd-DTPA has been used as a drug surro-
gate. Noninvasive real-time transport of Gd-DTPA released from an intravitreal poly-
mer-based implant was imaged in rabbits.85 It was also shown that episcleral implants at 
the equator of the eye do not deliver Gd-DTPA into the vitreous,86 whereas intrascleral 
infusions were successful in transporting Gd-DTPA to the posterior segment from an 
anterior infusion site through the suprachoroidal space.87 These results indicate that the 
suprachoroidal space is a compartment that can be used to deliver drugs to posterior 
structures of the eye.
Positron emission tomography is also used in pharmacokinetic studies. After radiola-
beling of bevacizumab and ranibizumab with I-124, the pharmacokinetic properties 
of these drugs after intravitreal injection in rabbits were studied over time using a mi-
cro-PET device coupled with a CT scan. It was demonstrated that bevacizumab and 
ranibizumab were retained in the vitreous cavity up to 28 and 21 days, respectively.28 Fi-
nally, fluorophotometry has recently been used to evaluate in vivo the transscleral de-
livery of fluorescein-conjugated dextrans to the posterior retina and choroid of rabbits.7



β-amyloid retinal plaques

It is assumed that the pathogenic mechanisms eventually leading to Alzheimer dis-
ease become manifest decades before the disease is recognized and are characterized 
by the accumulation of β-amyloid (Aβ) in neural tissue. Identification of individuals 
who are prone to develop Alzheimer disease may have an impact on the clinical course 
of the disease. At the moment, several clinical trials are in progress investigating the 
potential beneficial role of γ-secretase inhibitors (LY450139) (ClinicalTrials.gov  num-
ber, NCT00765115),169aggregation blockers, vaccination with Aβ, and monoclonal an-
tibodies against various Aβ epitopes. Early detection of neural Aβ accumulation likely 
helps to understand progression of the disease and may be used as a surrogate marker to 
detect early effects of these new drugs.
In vivo identification of neural Aβ plaques is a major issue in research in neurodegenera-
tive diseases. Presently, diagnosis of Alzheimer disease can only be established by the 
detection of Aβ accumulation and intracellular neurofibrillary tangles during a brain 
autopsy. Noninvasive in vivo detection of neuronal Aβ plaques in patients suspected 
of having Alzheimer disease and in animal models has been attempted,70, 124,128 but, so 
far, has not been successful, mainly because of the limited resolution.90, 105, 174

β-amyloid plaques are formed in the retina as well and share properties with those 
in the brain. The retina can be considered the most accessible human neural tissue 
for imaging purposes. Transgenic mice carrying the mutated human genes APPSWE 
and Presenilin 1DE9, which lead to an early-onset familial Alzheimer disease, were 
found to develop Aβ deposits in the retina.130, 138 Visualization of these deposits in the 
retina would allow noninvasive imaging of Aβ plaques as a pathological hallmark 
of Alzheimer disease already at early stages. For this purpose, curcumin (diferuloyl-
methane) was used, a natural and safe fluorochrome that binds and labels Aβ plaques. 
Eyes of mice that are models for Alzheimer disease have been imaged following sys-
temic administration of curcumin using a retinal imaging microscope assembled with 
a specific set of filters suitable to detect curcumin fluorescence. Individual plaques or 
plaque clusters at high resolution were detected in the retinas of transgenic diseased 
mice, whereas control mice did not show any plaque formation. Moreover, numbers 
of these retinal plaques decreased after immune-based therapy, as they did in the 
brain. In addition, Aβ plaques were imaged in postmortem retinas of human patients 
at early and late stages of Alzheimer disease. The plaques were mainly located in the 
inner segments of the retina which facilitates in vivo imaging.93 These studies indicate 
that retinal Aβ plaques may be used as diagnostic marker for Alzheimer disease in 
its early stages. It remains to be established whether the visualization of Aβ plaques 
in the retina of Alzheimer patients by multispectral imaging with adaptive optics is 
also feasible.
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Future perspectives

This overview shows the possibilities of application of molecular imaging techniques 
in ophthalmology. With the ongoing advancements in noninvasive imaging, molecu-
lar imaging will certainly be crucial to assess effects of novel therapies and diagnostic 
methods. Two major difficulties explain the delay in implementing molecular imaging 
into clinical practice: the lack of toxicity studies of molecular probes in humans and 
the lack of adequate imaging devices for high-resolution noninvasive imaging in the 
human body. Due to the easy accessibility of the eye, and the current technologi-
cal developments such as multispectral imaging, it is assumed that ophthalmology 
might be one of the first medical fields to benefit from the use of these methods in the 
clinic. In the meantime, application of molecular imaging techniques in pre-clinical 
research is already leading to great advances in the understanding of the complex 
molecular interactions that eventually lead to disease states in the eye. Furthermore, 
molecular imaging methods may enable new possibilities to diagnose and character-
ize systemic diseases with repercussion in the eye such as Alzheimer disease.

Method of literature search

For this review the Medline and Web of Science databases for the time period 1950 up 
to 15 October 2012 were searched on the Web of Knowledge System. Due to the broad 
nature of the subject and the different subtopics covered, we performed a separate search 
for each of the subtopics listed in the review. No limits were used so that all languages, 
all types of articles, all years, and all indexed publications were retrieved. In the second 
phase, all abstracts were scanned to identify relevant articles within the specific topics 
of our review. Our selection included articles in English, French, and German. Review 
articles were also included when relevant. Ophthalmic imaging articles were classified 
as “molecular imaging techniques” and “non-molecular imaging techniques”. Inclusion 
in the former category required the use of molecular probes and endogenous or exoge-
nous contrast agents. All relevant ophthalmic imaging articles that were considered to 
fulfill the criteria of “molecular imaging techniques” were included. Other ophthalmic 
imaging articles that did not fulfill the criteria were included only when considered rel-
evant for this review. Copies of the entire articles were obtained. The bibliographies of 
the retrieved articles were manually searched and additional references from key articles 
were incorporated into the text when deemed necessary. In the third stage, articles were 
reviewed and incorporated into the manuscript. Due to the rapid evolving nature of the 
subject, we included some information gathered from selected presentations at scientific 
meetings and from theoretical book chapters.
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The first aim of  this thesis was to investigate the role of  the ubiquitin-proteasome system 
(UPS) in retinal pigment epithelial (RPE) cell-mediated proteostasis. We then addressed 
potential causes of  proteasomal dysfunction in RPE cells, whether the UPS was involved 
in RPE-mediated fibrogenic pathways and investigated the effects of  pharmacological 
inhibition and activation of  the UPS in RPE cells. The second aim was to apply a newly-
developed retinal multispectral imaging device to visualize the above-mentioned processes 
in the neurosensory retina. 
In Chapter 3, we assessed potential triggers of  proteasome dysfunction in RPE cells 
and, indirectly, the role of  the proteasome in the pathogenesis of  age-related macular 
degeneration (AMD). An AMD-like environment was induced in human RPE cell cultures 
to assess individual effects of  specific AMD pathogens such as complement anaphylatoxins 
C3a and C5a, oxidative stress induced by H2O2 and phagocytosis of  photoreceptor 
outer segments. In addition, we characterized the effects of  aging on proteasome overall 
activity and assessed the expression of  proteasome classic and inducible subunits β5 and 
β5i in a mouse model of  age-related RPE degeneration. It was shown that complement 
activation, via complement factor C3a, was associated with decreased proteasome-
mediated proteolytic activity and that aging was associated with decreased proteasome 
overall activity. Furthermore, expression of  one of  the immunoproteasome subunits was 
upregulated in a mouse model of  age-related RPE degeneration. Immunoproteasome 
activation is presumed to be a cellular response to stress and mice deficient in this specific 
proteasome subunit (β5i) have been shown to be less resistant to oxidative stress. These 
results indicate an association between complement activation and ineffective RPE-
mediated proteostasis. Further studies are warranted to establish the contribution of  
proteasome dysfunction to AMD pathogenesis. 
In Chapter 4, we assessed whether the UPS was involved in fibrogenic and proliferative 
responses of  RPE cells. Fibrosis in ophthalmic disorders, such as neovascular AMD 
and proliferative vitreoretinopathy, is irreversible and untreatable. Since the advent of  
efficacious anti-angiogenic drugs, the study of  fibrogenic pathways in ophthalmic disorders 



has been relegated. In recent years, proteasome inhibitors have been proposed as potential 
agents in the prevention and treatment of  fibrotic disorders such as renal and hepatic 
fibrosis. Therefore, we assessed whether proteasome modulation affected expression 
of  extracellular matrix genes in RPE cells. Epoxomicin, a proteasome selective and 
irreversible inhibitor, was used to guarantee maximal proteasome inhibition. Epoxomicin 
arrested cell cycle progression and downregulated expression of  transforming growth 
factor-β (TGFβ) which in turn was found to be a major pro-fibrogenic factor. Likewise, 
epoxomicin not only downregulated the expression of  important extracellular matrix 
genes, but also upregulated transcription of  peroxisome proliferator-associated receptor-γ 
(PPARγ), an important anti-fibrogenic factor. These results suggest a link between UPS 
modulation and fibrogenic pathways in the RPE.
Next, we investigated exogenous drugs as proteasome-modulating agents, such as 
curcumin, the main curcuminoid of  turmeric (Curcuma longa), which amongst other 
functions is also known to modulate proteasome function. Although a myriad of  potential 
beneficial effects of  curcumin have been described, its use as a therapeutic agent is 
hampered by the poor bioavailability profile of  standard curcumin. Furthermore, it 
has been suggested that curcumin is toxic for RPE cells. The goal of  Chapter 5 was 
dual: to assess the cytotoxic, proliferative and oxidative effects of  nano-curcumin 
(Theracurmin®), a bioavailable curcumin that is dispersed with nano-colloidal particles, 
in comparison with standard curcumin, and to assess the effects of  standard curcumin 
and nano-curcumin on proteasome expression and activity. We found nano-curcumin 
to be a safer alternative when compared to standard curcumin. Nano-curcumin did not 
show significant cytotoxicity and did not affect cell cycle progression whereas standard 
curcumin reduced cell viability and increased production of  reactive oxygen species. 
This may stem from the more stable biochemical profile of  nano-curcumin which is 100 
times smaller in size and thus more soluble than standard curcumin. Both nano-curcumin 
and standard curcumin exerted significant changes in proteasome-mediated proteostasis 
with consequent changes in expression of  proteasome subunits. Our results indicated 
that RPE function is negatively affected by curcumin supplementation. The question 
remains whether oral intake of  curcumin reaches the eye at levels required for significant 
molecular effects. 
In our studies, a link between dysregulated complement pathway activation and proteasome 
dysfunction was established. The complement system is an important pathogenic factor 
associated with the development of  AMD and likewise, modulation of  the complement 
pathway is currently being explored as strategy to halt progression of  this disease. 
However, a phase II clinical trial of  eculizumab, an inhibitor of  complement factor C5, 
failed to show any clinical benefit in nonexudative AMD. In Chapter 6, we assessed the 
effects of  eculizumab on Purtscher-like retinopathy, which, similarly to AMD, is known 
to be triggered by complement activation. In this particular case, complement activation 
was caused by a mutation in complement factor H, a regulator of  the alternative pathway 
of  the complement which is also known to increase susceptibility to the development 
of  AMD. In this patient, systemic eculizumab treatment was associated with full visual 
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recovery and resolution of  all clinical signs and symptoms indicating that therapeutic 
levels were reached in the choroid and retina. The outcome attained in this patient 
highlights the differences between acute complement activation, as seen in Purtscher-
like retinopathies, and chronic complement activation which occurs in AMD. The 
pathogenesis of  Purtscher-like retinopathies was reviewed based on the therapeutic effects 
attained in this patient and the recent description of  the molecular pathways involved in 
hemolytic uremic syndrome, namely endothelial activation of  the coagulation cascade by 
complement and the formation of  microthrombi. This is the first report of  an effective 
treatment of  visually-threatening Purtscher-like retinopathy. 
The second part of  this thesis is focused on ophthalmic molecular imaging methods as 
a means to visualize ocular molecular processes in vivo. In Chapter 7, we describe the 
development of  a retinal multispectral imaging system and compare its efficacy with that 
of  a retinal hyperspectral imaging system incorporating a liquid crystal tunable filter. 
The clinical applications of  ophthalmic molecular imaging techniques, as reviewed in 
Chapter 8, depend on the development of  effective imaging devices and techniques that 
permit the visualization and quantification of  extrinsic and intrinsic chromophores that 
enable molecular imaging. Our retinal multispectral imaging allows selection of  filters 
needed to visualize the chromophore of  interest. This selection of  filters ultimately results 
in faster acquisition of  images and higher quality image processing. Our initial aim was 
to use curcumin as an extrinsic contrast agent. However, we found that curcumin lacked 
the spectral characteristics required for spectral imaging. It became apparent during 
our study that ophthalmic molecular imaging techniques are hampered by the lack of  
contrast agents that are approved for clinical use. Therefore, we used hemoglobin as a 
naturally-occurring chromophore to demonstrate the feasibility of  multispectral imaging 
in the human eye for the acquisition of  retinal spectral images of  high quality obtained 
with short capture times. Further studies are warranted to test the feasibility of  our system 
with exogenous contrast molecular imaging agents.
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Het eerste onderwerp van het onderzoek beschreven in dit proefschrift was de rol van het 
ubiquitine-proteasoom systeem (UPS) in retinale pigment epitheel (RPE) celgemediëerde 
proteostase. Vervolgens werden mogelijke oorzaken van proteasomale dysfunctie in RPE 
cellen bestudeerd. Verder is onderzocht of  het UPS betrokken is bij RPE-gemediëerde 
fibrose en wat de effecten zijn van farmacologische remming en activatie van het UPS in 
RPE cellen. Het tweede onderwerp van dit proefschrift is de toepassing van een nieuw-
ontwikkeld instrument voor het multispectraal imagen van de retina om de bovengenoemde 
processen in de neurosensorische retina te visualiseren. In Hoofdstuk 3 hebben we 
mogelijke oorzaken van proteasoom dysfunctie in RPE cellen onderzocht en, indirect, de 
rol van het proteasoom in de pathogenese van leeftijdsgebonden macula degeneratie 
(AMD). Een AMD-achtige omgeving werd geïntroduceerd in humane RPE celkweken 
om effecten van specifieke AMD pathogenen vast te stellen, zoals de complement 
anaphylatoxines C3a en C5a, oxidatieve stress geïnduceerd door waterstof  peroxide en 
fagocytose van de buitenste fotoreceptor segmenten. Bovendien hebben we de effecten 
van veroudering op proteasoom activiteit gekarakteriseerd en hebben we expressie van de 
klassieke en de induceerbare proteasoom subunits β5 en β5i bestudeerd in een muismodel 
van leeftijdsafhankelijke RPE degeneratie. We hebben aangetoond dat complement 
activatie via complement factor C3a geassocieerd is met gereduceerde 
proteasoomgemediëerde proteolytische activiteit en dat afgenomen proteasoom activiteit 
samenhangt met veroudering. Bovendien hebben we gevonden dat expressie van een van 
de induceerbare immunoproteasoom subunits opgereguleerd is in een muismodel van 
leeftijdsafhankelijke RPE degeneratie. Immunoproteasoom activatie wordt verondersteld 
een cellulaire respons te zijn op stress en muizen die deficiënt zijn voor deze proteasoom 
subunit (β5i) zijn minder resistent tegen oxidatieve stress. Deze bevindingen duiden op 
een associatie tussen complement activatie en ineffectieve RPE-gemediëerde proteostase. 
Verder onderzoek is noodzakelijk om de bijdrage van proteasoom dysfunctie aan de AMD 
pathogenese vast te stellen. In Hoofdstuk 4 hebben we onderzocht of  het UPS betrokken 
is bij fibrose en proliferatie van RPE cellen. Fibrose in oogziekten zoals neovasculaire 



AMD en proliferatieve vitreoretinopathie is irreversibel en onbehandelbaar. Sinds er 
effectieve anti-angiogenese geneesmiddelen beschikbaar zijn, is de studie naar oorzaken 
van fibrose in oogziekten in het slop geraakt. In de afgelopen jaren is gesuggereerd dat 
proteasoom remmers mogelijke agentia zijn voor preventie en behandeling van fibrose in 
nier en lever. Derhalve hebben we onderzocht of  modulatie van het proteasoom een effect 
heeft op de expressie van genen van extracellulaire matrix eiwitten in RPE cellen. De 
selectieve en irreversibele remmer van het proteasoom, epoxomicine, hebben we gebruikt 
om maximale remming van proteasoom activiteit te bewerkstelligen. Epoxomicine remde 
de celcyclus en de expressie van transforming growth factor-β (TGFβ), wat een krachtige 
profibrogene factor is. Bovendien remde epoxomicine niet alleen de expressie van genen 
van belangrijke extracellulaire matrix eiwitten, maar induceerde ook transcriptie van 
peroxisoom proliferator-geassocieerde receptor-γ (PPARγ), een belangrijke anti-fibrogene 
factor. Deze resultaten suggereren een relatie tussen UPS modulatie en fibrogenese in 
RPE. Vervolgens onderzochten we verbindingen op hun proteasoom-modulerende 
activiteit, zoals curcumine, dat naast andere effecten ook bekend is vanwege 
proteasoommodulerende effecten. Een veelvoud van mogelijke effecten van curcumine 
zijn beschreven, maar het gebruik van curcumine als therapeutisch middel wordt beperkt 
door de geringe biologische beschikbaarheid van standaard curcumine. Bovendien is 
gesuggereerd dat curcumine toxisch is voor RPE cellen. Het doel van het onderzoek 
beschreven in Hoofdstuk 5 was tweeledig: het vaststellen van de cytotoxische, 
antiproliferatieve en oxidatieve effecten van nanocurcumine (Theracurmin®), een 
biologisch beschikbaar curcumine dat vermengd is met nanocolloïdale deeltjes, in 
vergelijking met standaard curcumine, en het bepalen van de effecten van standaard 
curcumine en nanocurcumine op de expressie en activiteit van het proteasoom in RPE 
cellen. We hebben gevonden dat nanocurcumine een veiliger alternatief  is in vergelijking 
met standaard curcumine. Nanocurcumine was niet of  nauwelijks cytotoxisch en had 
geen effect op de celcyclus, terwijl standaard curcumine de levensvatbaarheid van RPE 
cellen verminderde en de productie van reactieve zuurstof  deed toenemen. Dit verschil in 
effecten kan verklaard worden door het stabielere biochemische profiel van nanocurcumine 
dat 100 keer kleiner is dan standaard curcumine en derhalve beter water-oplosbaar. 
Nanocurcumine en standaard curcumine vertoonden beiden significante effecten op 
proteasoom-gemediëerde proteostase en expressie van proteasoom subunits. Onze 
bevindingen duiden op een negatief  effect van standaard curcumine op het functioneren 
van RPE. Bovendien blijft de vraag onbeantwoord of  nanocurcumine en standaard 
curcumine bij oraal gebruik het oog in voldoende concentraties bereiken die noodzakelijk 
zijn voor significante moleculaire effecten. In onze studies is een relatie vastgesteld tussen 
een ontregelde activatie van het complement systeem en het dysfunctioneren van het 
proteasoom. Het complement systeem is een belangrijke pathogene factor die geassocieerd 
is met de ontwikkeling van AMD en modulatie van het complement systeem wordt 
momenteel onderzocht als therapeutische strategie om de progressie van AMD te 
remmen. Echter, een fase II klinische trial met eculizumab, een remmer van complement 
factor C5 liet geen klinische effecten zien in niet exudatieve AMD. In Hoofdstuk 6 
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beschrijven we de effecten van eculizumab in Putscher-achtige retinopathie, die evenals 
AMD door complement activatie wordt geïnduceerd. In dit bijzondere geval werd 
complement activatie veroorzaakt door een mutatie in het gen van complement factor H, 
een regulator van het alternatieve complement systeem die beschouwd wordt ook de 
gevoeligheid voor de ontwikkeling van AMD te bevorderen. Systematische behandeling 
van deze patiënt met eculizumab was geassocieerd met volledig herstel van visus en het 
verdwijnen van alle klinische symptomen, hetgeen een indicatie is dat therapeutische 
concentraties verkregen werden in choroïd en retina. Deze resultaten bij de patiënt geven 
aan dat er verschil bestaat tussen acute complement activatie zoals die gevonden wordt in 
Putscher-achtige retinopathie en chronische complement activatie bij AMD. Een overzicht 
van de pathogenese van Purtscher-achtige retinopathie is beschreven op basis van de 
therapeutische effecten die behaald werden bij deze patiënt. Bovendien zijn de moleculaire 
achtergronden van het syndroom van hemolytische uremie beschreven, te weten de 
endotheliale activatie van de coagulatie cascade door het complement systeem en de 
vorming van microthrombi. Dit is de eerste beschrijving van een effectieve behandeling 
van visus-bedreigende Purtscherachtige retinopathie. Het tweede deel van dit proefschrift 
is gericht op moleculaire imaging methodes voor het oog om moleculaire processen in 
vivo te visualiseren. In Hoofdstuk 7, beschrijven we de ontwikkeling van een multispectraal 
imaging systeem van de retina en vergelijken we de effectiviteit ervan met die van een 
hyperspectraal imaging systeem van de retina, waarbij een liquid crystal tunable filter 
wordt gebruikt. Klinische toepassingen van moleculaire imaging technieken in het oog, 
zoals beschreven in Hoofdstuk 8, zijn afhankelijk van de ontwikkeling van effectieve 
imaging apparatuur en technieken, die de visualisatie en kwantificering van extrinsieke en 
intrinsieke chromoforen mogelijk maken. Het multispectrale imaging systeem dat wij 
beschrijven maakt het mogelijk om filters te selecteren die nodig zijn om chromoforen die 
gebruikt worden te visualiseren. Deze selectie van filters leidt uiteindelijk tot een snellere 
acquisitie van beelden en hogere kwaliteit van image processing. Ons oorspronkelijke doel 
was het gebruik van curcumine als extrinsiek contrastmiddel. Echter, we hebben gevonden 
dat curcumine de spectrale karakteristieken miste die noodzakelijk zijn voor spectraal 
imaging. Tijdens ons onderzoek werd duidelijk dat moleculair imaging in het oog beperkt 
wordt door het gebrek aan contrastmiddelen die goedgekeurd zijn voor klinische 
toepassingen. Derhalve hebben we hemoglobine gebruikt als intrinsiek chomofoor om de 
geschiktheid van multispectraal imaging in het menselijk oog te bewijzen voor snelle 
acquisitie van spectrale beelden van de retina van hoge kwaliteit. Meer onderzoek is 
noodzakelijk om de geschiktheid van dit systeem met extrinsieke contrastmiddelen voor 
moleculair imaging te testen.
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In the post-genomic era, characterisation of pathways involved in 
protein turnover has been a major area of research in medicine. The 
discovery of ubiquitin and thereafter the proteasome has revolutionised 
the understanding of the mechanisms responsible for protein regulation, 
also known as proteostasis. The proteasome acts as a nanomachine in 
eukaryotic and archaeal cells, responsible for proteolysis of soluble 
proteins that are tagged for degradation. This is achieved by selective 
ubiquitination of target proteins, a process that involves the covalent 
attachment of a poly-ubiquitin chain to the protein that is marked for 
recycling. In recent years, dysfunction of the ubiquitin-proteasome 
system has been linked to numerous human diseases which has led to the 
development of novel therapies using proteasome inhibitors. In this 
dissertation, we explore the contributions of the proteasome to retinal 
pathology and discuss strategies of therapeutic proteasome modulation 
in the retinal pigment epithelium.
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