852 research outputs found

    An integrated recycling approach for GFRP pultrusion wastes: recycling and reuse assessment into new composite materials using Fuzzy Boolean Nets

    Get PDF
    In this study, efforts were made in order to put forward an integrated recycling approach for the thermoset based glass fibre reinforced polymer (GPRP) rejects derived from the pultrusion manufacturing industry. Both the recycling process and the development of a new cost-effective end-use application for the recyclates were considered. For this purpose, i) among the several available recycling techniques for thermoset based composite materials, the most suitable one for the envisaged application was selected (mechanical recycling); and ii) an experimental work was carried out in order to assess the added-value of the obtained recyclates as aggregates and reinforcement replacements into concrete-polymer composite materials. Potential recycling solution was assessed by mechanical behaviour of resultant GFRP waste modified concrete-polymer composites with regard to unmodified materials. In the mix design process of the new GFRP waste based composite material, the recyclate content and size grade, and the effect of the incorporation of an adhesion promoter were considered as material factors and systematically tested between reasonable ranges. The optimization process of the modified formulations was supported by the Fuzzy Boolean Nets methodology, which allowed finding the best balance between material parameters that maximizes both flexural and compressive strengths of final composite. Comparing to related end-use applications of GFRP wastes in cementitious based concrete materials, the proposed solution overcome some of the problems found, namely the possible incompatibilities arisen from alkalis-silica reaction and the decrease in the mechanical properties due to high water-cement ratio required to achieve the desirable workability. Obtained results were very promising towards a global cost-effective waste management solution for GFRP industrial wastes and end-of-life products that will lead to a more sustainable composite materials industry

    Efficiency and cost estimation for a static frequency converter and a rail power conditioner based on an indirect modular multilevel converter in railways applications

    Get PDF
    This paper presents a comparative study between two different power electronics solutions for electrified railway substations to overcome some drawbacks which could appear on the public grid side. These drawbacks or troubles on the public grid side are mainly the harmonics and the negative sequence components (NSCs) of currents, which could become clear in the case of feeding single-phase locomotives or unbalanced loads. The static frequency converters (SFCs) and the rail power conditioners (RPCs) based on an indirect AC/DC/AC modular multilevel converter (MMC) are the main area of interest in this study, taking into consideration the costs estimation analysis between solutions, the efficiency and the power quality on the public grid side. Both systems of SFC and RPC based on an indirect MMC operate on medium voltage levels to feed the catenary line and to solve the problems of harmonics and NSCs. Along the paper are described the system architecture, the control algorithm, the inherent benefits, the estimated cost of implementation, and the operation efficiency based on computational simulation results for each system.This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2013. Mohamed Tanta is supported by FCT doctoral scholarship with a reference PD/BD/127815/2016.info:eu-repo/semantics/acceptedVersio

    Climate change and impact on renewable energies in the Azores strategic visions for sustainability

    Get PDF
    The energy sector is the largest contributor to global greenhouse gas emissions, but could also be seriously affected by climate change, calling into question society’s current consumption patterns. In this communication, climate projections based on a set of numerical models of global circulation are used to simulate the climate until the end of the century and keep in mind the alternative scenarios of pollutant emissions. Apart from solar energy, the results for the Azores region show a negative impact on the production and consumption of renewable energies. In the regional context, this issue assumes special relevance, given the geographical constraints, such as territorial discontinuity and insularity. Based on these assumptions, measures and recommendations are pointed out for the sectors that most penalize greenhouse gas emissions, considering the energy sustainability in the Azores and the commitments and goals assumed under international agreements.info:eu-repo/semantics/publishedVersio

    Deadbeat predictive current control for circulating currents reduction in a modular multilevel converter based rail power conditioner

    Get PDF
    This paper presents a deadbeat predictive current control methodology to reduce the circulating currents in a modular multilevel converter (MMC) when it operates as a rail power conditioner (RPC) in a conventional railway system-based V/V connection. For this purpose, a half-bridge MMC based on half-bridge submodules, operating as an RPC is explained, and the total system is denominated as a simplified rail power conditioner (SRPC). The SRPC in this study is used to compensate harmonics, reactive power, and the negative sequence component of currents. This paper explains the SRPC system architecture, the key control algorithms, and the deadbeat predictive current control methodology. Mathematical analysis, based on the MMC equivalent circuit, is described and the reference equations are presented. Moreover, simulation results of the deadbeat predictive current control methodology are compared with the results of the conventional proportional-integral (PI) controller. This comparison is to verify the effectiveness of the proposed control strategy. Simulation results of the SRPC show reduced circulating currents in the MMC phases when using the predictive control approach, besides accomplishing power quality improvement at the three-phase power grid side.This work has been supported by the Portuguese Foundation of Science and Technology (FCT), in Portuguese, Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020 and PTDC/EEI-EEE/28813/2017. The first author Mohamed Tanta is supported by FCT Ph.D. grant with a reference PD/BD/127815/2016

    A comprehensive comparison of rail power conditioners based on two-level converters and a V/V power transformer in railway traction power systems

    Get PDF
    Electric locomotives in the traction power systems represent huge nonlinear single phase loads and they affect adversely the public electrical grid stability and the power quality. Some of such problems are related to the harmonic distortion and the Negative Sequence Components (NSCs). The Rail Power Conditioners (RPCs) are widely used to accomplish harmonics mitigation, besides NSCs compensation, then, maintaining balanced and sinusoidal public electrical grid currents. This paper presents a comprehensive comparison study between three different RPCs based on the two level converters and a V/V power transformer. The Four Wire Rail Power Conditioner (FW RPC), the Three Wire Rail Power Conditioner (TW RPC) and the Half Bridge Rail Power Conditioner (HB RPC) are the main conditioners of interest. The main contribution of this paper is to perform a comprehensive comparison between the aforementioned RPCs, including the control algorithms and the compensating performance regarding the power quality problems. Simulation results with different operation scenarios are presented to establish an appropriate comparison between the aforementioned RPCs topologies.Mohamed Tanta was supported by FCT (Fundação para a Ciência e Tecnologia) PhD grant with a reference PD/BD/127815/2016. This work has been supported by COMPETE: POCI-01-0145–FEDER–007043 and FCT within the Project Scope: UID/CEC/00319/2013.info:eu-repo/semantics/publishedVersio

    Topologies and operation modes of rail power conditioners in AC traction grids: review and comprehensive comparison

    Get PDF
    Electric locomotives in AC traction power systems represent a huge single-phase non-linear load and, detrimentally, affect the power quality and the efficiency of the three-phase power grid. Nevertheless, along the last decades, power electronics are being used to mitigate power quality problems in the three-phase power grid. In particular, Rail Power Conditioner (RPC) helps to increase the loading capacity of traction substations and improve the power quality of three-phase power grids. As the main characteristics, an RPC can supply reactive power, suppress current harmonics and overcome currents imbalance of the three-phase power grid. On the other hand, the traction substations may be constituted by different types of power transformers. For instance, single-phase power transformers and open-delta (V/V) power transformers are widely used, while Scott power transformers are less frequently used, since they are more complex and expensive. In this framework, this work presents a review study of RPC topologies, including their operation modes, and a comprehensive comparison between the characteristics of the RPC topologies when using different types of AC traction substations and power transformers. This helps to ensure the correct selection of the RPC topology for a specific application, according to the main structure of the traction substation. Consequently, and based on the established review, it is possible to sort and allocate each RPC topology for limited or wider applications.This work was supported by the Portuguese Foundation of Science and Technology (FCT) (in Portuguese, Fundação para a Ciência e Tecnologia, within the R&D Units Project Scope: UIDB/00319/2020). The first author Mohamed Tanta is supported by FCT Ph.D. grant with a reference PD/BD/127815/2016

    Fluorescence studies on new potential antitumoral benzothienopyran-1-ones in solution and in lipid membranes

    Get PDF
    This work was funded by Foundation for Science and Technology (FCT, Portugal) and FEDER through CFUM and CQ-UM, research project PTDC/QUI/81238/2006 and PhD grants of M.S.D. Carvalho SFRH/BD/47052/2008 and of R.C. Calhelha SFRH/BD/29274/2006

    Position-sensitive Si pad detectors for electron emission channeling experiments

    Get PDF
    Position-sensitive detector systems, initially developed for the detection of X-rays, have been adapted for their use in electron emission channeling experiments. Each detection system consists of a 30.8x30.8 mm2^{2} 22x22 -pad Si detector, either of 0.3 mm, 0.5 mm or 1 mm thickness, four 128-channel preamplifier chips, a backplane trigger circuit, a sampling analog to digital converter, a digital signal processor, and a personal computer for data display and storage. The operational principle of these detection systems is described, and characteristic features such as energy and position resolution and maximum count rate, which have been determined from tests with conversion electrons and β ⁣\beta^-\! -particles in the energy range 40--600 keV, are presented

    Magnetic response dependence of ZnO based thin films on Ag doping and processing architecture

    Get PDF
    Multifunctional and multiresponsive thin films are playing an increasing role in modern technology. This work reports a study on the magnetic properties of ZnO and Ag-doped ZnO semiconducting films prepared with a zigzag-like columnar architecture and their correlation with the processing conditions. The films were grown through Glancing Angle Deposition (GLAD) co-sputtering technique to improve the induced ferromagnetism at room temperature. Structural and morphological characterizations have been performed and correlated with the paramagnetic resonance measurements, which demonstrate the existence of vacancies in both as-cast and annealed films. The magnetic measurements reveal changes in the magnetic order of both ZnO and Ag-doped ZnO films with increasing temperature, showing an evolution from a paramagnetic (at low temperature) to a diamagnetic behavior (at room temperature). Further, the room temperature magnetic properties indicate a ferromagnetic order even for the un-doped ZnO film. The results open new perspectives for the development of multifunctional ZnO semiconductors, the GLAD co-sputtering technique enables the control of the magnetic response, even in the un-doped semiconductor materials.The Brazilian agencies CNPq, CAPES partially supports the research. From Portugal side, this work was supported by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding UID/FIS/04650/2020 and the junior research contract (A.F.). Financial support from the Basque Government Industry Department under the ELKARTEK. HAZITEK and PIBA programs is also acknowledged

    Invasive tests in pregnancy

    Get PDF
    corecore