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Abstract: This paper presents a deadbeat predictive current control methodology to reduce the
circulating currents in a modular multilevel converter (MMC) when it operates as a rail power
conditioner (RPC) in a conventional railway system-based V/V connection. For this purpose,
a half-bridge MMC based on half-bridge submodules, operating as an RPC is explained, and the
total system is denominated as a simplified rail power conditioner (SRPC). The SRPC in this study is
used to compensate harmonics, reactive power, and the negative sequence component of currents.
This paper explains the SRPC system architecture, the key control algorithms, and the deadbeat
predictive current control methodology. Mathematical analysis, based on the MMC equivalent
circuit, is described and the reference equations are presented. Moreover, simulation results of the
deadbeat predictive current control methodology are compared with the results of the conventional
proportional-integral (PI) controller. This comparison is to verify the effectiveness of the proposed
control strategy. Simulation results of the SRPC show reduced circulating currents in the MMC phases
when using the predictive control approach, besides accomplishing power quality improvement at
the three-phase power grid side.

Keywords: circulating current; deadbeat predictive current control; modular multilevel converter
(MMC), rail power conditioner (RPC)

1. Introduction

Power quality phenomena in alternating current (AC) electrified railway have drawn more
attention in the last decades, especially, after the evolution in the power electronics field [1]. Railway
operators have an absolute interest to run the electrified trains with the lowest possible costs. In this
context, various solutions were proposed to overcome the power quality deterioration in the electrified
railway, e.g., the flexible AC transmission systems (FACTS) presented in [1–5]. On the other side,
the modular multilevel converter (MMC) is an attractive solution for medium-voltage applications
due to the lower harmonics, lower switching losses, MMC flexibility, and scalability [6,7] since other
multilevel converters, such as the neutral point clamp and the flying capacitor multilevel converters,
are quite hard to extend to higher levels [8]. Therefore, MMC has been enhanced to be combined with
the FACTS family. As example, MMC has been dedicated to operating as a rail power conditioner
(RPC) with different topologies in [6,9], and an MMC based static synchronous compensator for railway
applications is proposed in [10].

Half-bridge converters have been used in high power applications due to their high efficiency,
low cost and simple control compared to the full-bridge converters [11]. In this context, the half-bridge
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AC/DC/AC MMC based RPC using a V/V power transformer, denominated as a simplified rail power
conditioner (SRPC), is used in this study. The main disadvantage of the half-bridge MMC is the fact that
it requires the double of the voltage with respect to the output neutral, and therefore, two capacitors
with a mid-neutral point are required. In any case, the SRPC total power rating is divided between the
MMC submodules (SMs), then, a higher number of MMC SMs signifies lower power ratings required
for each SM, and a better output performance to synthesize a multilevel output waveform. A SM
consists of a storage capacitor (with voltage VSM) and a half-bridge converter [12].

The circulating current control is important to suppress the harmonic contents produced in the MMC
arm currents due to the SM capacitor voltage ripples or the inner DC-voltage differences between the
MMC SMs. The magnitude of the circulating current has an influence on the MMC arm current. It
increases the total root mean square (RMS) values of the MMC arm currents, which leads to extra power
losses, and second-order harmonics will result in further generation of other higher-order harmonics,
such as the 4th, 6th, 8th, etc., [13]. The circulating currents do not contribute to the MMC output currents
synthesized by the power compensator, since the circulating currents flow only in the MMC arms [14].

As a conventional method to suppress circulating currents, inner passive filters are used, but they
do not totally solve the circulating currents problem [15]. Furthermore, the large passive component
values may lead to bulky implementation of the MMC [16]. The circulating current can be reduced
by increasing the inductors between the MMC arms or by increasing the SM capacitor. Nevertheless,
the size of the inductors and the cost of SM capacitors have to be taken into account [17]. On the
other hand, as addressed in [18], the existence of a small circulating current component in the MMC
arm current can be useful to have a control freedom, thus optimizing the MMC performance. In
some applications, circulating currents can be used in a useful way, e.g., during the phase-to-ground
fault, in which the MMC works in an asymmetrical operation whereby the power will flow through
the upper and the lower MMC arms, leading to an imbalance of arm capacitor energy. In that case,
improved control strategies were developed based on circulating current injection [19,20].

Concerning the circulating current elimination, a method based on repetitive controller and
proportional-resonant (PR) controllers using a phase-shifted pulse-width modulation (PWM) is
presented in [8]. In addition, and as presented in [21], a proportional-integral (PI) controller is used
to control the circulating current. However, many variables have to be well-adjusted to guarantee
a good circulating current cancellation. In particular, a method based on a dual vector current
controller for high-voltage direct current systems under unbalanced voltage conditions is presented
in [21,22]. However, under unbalanced voltages, the circulating current is composed of positive
sequence component, negative sequence component (NSC), and zero sequence component. Hence,
this method is not the most adequate for the SRPC application, since the converter is used for the
purpose of active power balancing and reactive power compensation in two-phase V/V connection.
On the other hand, a model predictive control for circulating current suppression is proposed in [23].
However, when increasing the number of SMs in an MMC, this leads to a higher number of switching
states, which increases the control complexity due to the massive calculations that could overload the
digital controller [24]. A new method for reducing the circulating current by adding second and fourth
harmonics in the upper and the lower MMC arm currents is presented in [7]. However, this method
does not eliminate all the even-order harmonics in the MMC arm currents.

In this context, a methodology using the deadbeat predictive current control to reduce the MMC
circulating currents is presented in this paper, bearing in mind that, the interrelation between the MMC
output currents, the MMC circulating currents, and the SM voltages complicates the MMC control.
Moreover, these quantities could affect each other, thus affecting the MMC performance [14]. The
deadbeat predictive control uses the model of the SRPC system to compute, during every sampling
period, the required reference voltage that the converter needs to reach the reference value in the
next sampling instant [25]. Therefore, studying the SRPC model is important to extract the reference
voltages. Then, the output voltage signal of the deadbeat predictive controller is compared with a
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phase-shifted PWM to drive the switching devices. Indeed, the more accurate the parameter values of
the SRPC model, the better the performance of the controller.

In this framework, the main contributions of this paper are: (a) Proposing a methodology based
on a deadbeat predictive current control for the circulating current suppression in MMC; (b) An ample
mathematical analysis of the SRPC equivalent circuit to extract the final reference equations; (c) A
comprehensive comparison between the deadbeat predictive current control methodology and the
conventional PI control approach.

This paper is organized as follows: Section 2 explains the SRPC system compensation principle
when using the V/V power transformer connection. Section 3 presents in detail the SRPC mathematical
analysis based on the MMC equivalent circuit to extract the final reference voltages. Section 4 presents
the control algorithm blocks of the SRPC system, including, the MMC voltage balancing control.
Section 5 presents the simulation results and, finally, Section 6 summarizes the main conclusions.

2. SRPC Compensation Principle

The SRPC system structure is presented in Figure 1, where the main objective is to compensate
the NSC of currents, besides the harmonics produced by the electric locomotives [6]. A higher current
imbalance ratio indicates a huge difference between the three-phase currents and a higher NSC of
currents injected into the three-phase public power grid. The right feeder section is denoted as
phase x and the left feeder section is denoted as phase y. The corresponding phases on the primary
side windings of the V/V power transformer are denoted as phase A and phase B, respectively. By
considering the three-phase power grid voltages

.
UA,

.
UB, and

.
UC are:

.
UA = UA e j0◦

.
UB = UB e− j120◦

.
UC = UC e− j240◦

(1)
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Figure 1. Structure of the half-bridge modular multilevel converter (MMC) based simplified rail power
conditioner system (SRPC) used to validate the proposed control strategy.
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From Equation (1), and as shown in Figure 1, phase x and phase y voltages,
.

Ux,
.

Uy of the traction

power system correspond to the line-to-line grid voltages of
.

UAC, and
.

UBC, respectively, and can be
expressed as in Equation (2).

.
Ux =

UAC
KV

e− j30◦

.
Uy =

UBC
KV

e− j90◦ (2)

where, KV, denotes the turns ratio of the V/V power transformer. By assuming that both catenary sections
have a near unitary power factor (since modern locomotives are normally driven by bidirectional
PWM converters, approximately, at the substation, the power factor could be considered unitary) and
by considering sinusoidal current waveforms at the catenary sections, the fundamental currents of
both catenary sections x and y are in phase with the overhead catenary voltages

.
Ux, and

.
Uy, and are

expressed by:
.
ILx = ILx e− j30◦

.
ILy = ILy e− j90◦ (3)

where, ILx, ILy denote the fundamental RMS currents of both catenary sections x, and y, respectively.
The three-phase power grid currents in this case are as in Equation (4) and they have the phasors
diagram presented in Figure 2a.

.
IA = ILx

KV
e− j30◦

.
IB =

ILy
KV

e− j90◦

.
IC = − ILx

KV
e− j30◦

−
ILy
KV

e− j90◦
(4)
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Figure 2. Diagrams of the three-phase power grid currents: (a) When both catenary sections are
unequally loaded without compensation; (b) When balancing the active power between sections.

2.1. Active Power Balancing

The first step to achieving power quality improvement is to balance the active power between
sections, considering that the section x load is higher than the section y load. Consequently, phase
A current magnitude, which corresponds to section x catenary, will be higher than phase B current
magnitude, as shown in Figure 2a. According to Equation (4), phase C current has the highest value in
that case. By assuming negligible power losses in the SRPC power switches, SRPC system should shift
half of the load currents difference from the heavily to the lightly loaded section, as in Equation (5) [26].
As a result, SRPC system partially contributes to feeding active power required by traction loads. The
worst-case scenario for the SRPC to balance active power between sections is when one of the load
sections without load (no locomotives supplied by catenary section x or catenary section y) [27].

∆I =
1
2
(I Lx − ILy

)
(5)



Appl. Sci. 2020, 10, 1849 5 of 22

After shifting the active power difference, the three-phase power grid currents are established
as in (6). Accordingly and as shown in Figure 2b, phase A and phase B currents now have the same
magnitude, but phase C current still has the highest magnitude

(
IC1 =

√
3 IA1 =

√
3 IB1

)
. However,

phase C current is in phase with its phase voltage
.

UC, while the other two phases currents of
.
IA1 and

.
IB1 are shifted 30◦ angle with the corresponded phase voltages of

.
UA and

.
UB, since the reactive power

is not yet compensated [26,27].

.
IA1 =

.
IA −

∆I
KV

e− j30◦ = 1
2KV

(I Lx + ILy) e− j30◦

.
IB1 =

.
IB + ∆I

KV
e− j90◦ = 1

2KV
(I Lx+ILy) e− j90◦

.
IC1 = −

.
IA1 −

.
IB1

(6)

2.2. Reactive Power Compensation

It is important to add a certain reactive current to phase x, and phase y, in order to make the
three-phase currents balanced without NSC of currents. In this context, section x converter compensates
a capacitive reactive power and section y converter compensates an inductive reactive power when
V/V connection is implemented [6]. As presented in Equation (7), the reactive current components
have the same RMS value.

Irxr = Ix1 tanπ6 = 1
2 (I Lx + ILy) tanπ6

Iryr = Iy1 tanπ6 = 1
2 (I Lx + ILy) tanπ6

(7)

The three-phase power grid currents after active and reactive power compensation have an equal
magnitude as presented in Figure 3a. Accordingly, the currents at the secondary side of the V/V
power transformer also have equal magnitudes as presented in Equation (8) and Figure 3b. After
compensation, the instantaneous waveforms of the phase x and phase y currents are as in Equation (9).

.
Ix2 = .

Ix1
+ .

Irxr
= 1

√
3
(ILx

+ILy ) e j0◦

.
Iy2 = .

Iy1
+ .

Iryr
= 1

√
3
(ILx

+ILy ) e − j120◦

.
Iz2 = .

Ix2
+ .

Iy2
= 1

√
3
(ILx

+ILy ) e j120◦
(8)

ix2 =
√

2
3 (I Lx + ILy) sin(ωt + 0)

iy2 =
√

2
3 (I Lx + ILy) sin(ωt − 2π

3

) (9)
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The total compensation currents injected by the SRPC can be obtained from Figure 3b and
Equation (10). The positive direction of the compensation current is when it flows into the SRPC as
clarified in Figure 1.

irx
∗ = ix2 − iLx

iry
∗ = iy2 − iLy

(10)

3. SRPC Mathematical Analysis

3.1. Circulating Current Analysis

The MMC circulating currents are produced due to the inner DC-voltage differences between
MMC SMs, then, Figure 4 shows the equivalent circuit of one of the MMC phases. As shown, the
compensation current of phase x, which should be injected by the SRPC, irx, consists of two main
components: the upper arm current, irxu, and the lower arm current, irxl. As presented in Equation (11),
the upper arm current, irxu, includes two main components: the circulating current component, icirx,
and the current related to the compensation current, irx/2. The circulating current flows through the
whole MMC phase leg, circulates between the two dc-buses or/and among the MMC legs.

irxu = icirx −
irx

2
(11)
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As presented in Equation (12), the lower arm current, irxl, also includes two main components:
the circulating current component, icirx, and the current related to the compensation current, irx/2.

irxl = icirx +
irx

2
(12)

From Equations (11) and (12), the circulating current that flows through the MMC legs can
be expressed as in (13), which is composed by two main parts: the double fundamental frequency
component of 100 Hz and its even order harmonic contents and a direct current (DC) component
results from the DC-link currents [13].

icirx =
irxu + irxl

2
(13)
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By applying the Kirchhoff’s voltage law on the equivalent circuit of Figure 4, it is possible to
obtain the voltage equation of the upper and the lower loops as in Equation (14).

ux = − Lxu
dirxu

dt − uxu − irxu Rxu

ux = Lxl
dirxl
dt + uxl + irxl Rxl

(14)

3.2. Deadbeat Predictive Current Control

Unlike the PI and PR controllers that compile integral errors, deadbeat predictive control is a
technique that attempts to extract the required control action during each sample interval through
calculations based on the circuit model of the system being controlled. The accuracy of the equivalent
circuit is a significant factor to maintain the system output values equal to the reference signals [25].

Deadbeat predictive current control methodology can be easily programmed, and it is used
when a fast-dynamic response is required. However, this control has some disadvantages in terms
of existing errors due to the model assumptions and the unmodeled delay introduced by calculation
time and modulation [25]. In this context, according to [28], the current control strategies with the
smallest tracking error were the synchronous PI, the feedforward in [29], the sliding mode in [30],
and the deadbeat predictive control proposed in [31]. Therefore, reference equations based on the
deadbeat predictive control in [31] have been extracted in this paper using a low computational cost
after neglecting the semiconductor conduction and switching losses. This current control strategy was
selected since the results in [31] have a small steady-state error and a fast transient response.

Further steps are applied for the upper arm of section x converter. The deadbeat predictive current
control methodology used in this paper can be defined after knowing the error current of the upper
arm of section x converter as in (15).

irxu_err = i∗rxu − irxu (15)

Due to the low-voltage drops across the internal resistors of the MMC arm inductors, the voltage
drop across the MMC arm resistors is neglected to simplify the calculations, without introducing
significant error. By substituting the first Equation of (14) in (15):

ux = − Lxu
d(i ∗rxu − irxu_err)

dt
− uxu (16)

By separating the differential part of Equation (16), the upper arm voltage of section x converter
can be presented as in Equation (17).

uxu = − Lxu
d i∗rxu

dt
+ Lxu

d irxu_err

dt
− ux (17)

It is feasible to assume a linear variation of irxu_err(k) with the time, where (k) denotes the value
at the present sample interval and the next sample interval is denoted as (k + 1). According to
Equation (18), an assumption of i∗rxu(k) derivative in function to the variables value is possible at the
instant of (k) and (k − 1). Then, it is feasible to get Equation (19), where Ts refers to the sampling period.

dx
dt
�

x (k) − x (k − 1)
Ts

(18)

uxu(k) = −
Lxu

Ts
[ i∗rxu (k) − i∗rxu(k − 1) − irxu_err(k)] − ux(k) (19)

By substituting Equation (15) in (19):

uxu(k) =
Lxu

Ts
[−2 i∗rxu (k) + i∗rxu(k − 1) + irxu(k)] − ux(k) (20)
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The SRPC control algorithm should calculate the compensation current references, i∗rx, and i∗ry, as
in Equation (10), respectively. Therefore, Equation (20) as it is does not serve that purpose, since it
computes the compensation current references of the upper and the lower MMC arms, i∗rxu, and i∗ryu.
The main purpose of this control is to have a near zero circulating current, icirx, and iciry, in the MMC
phases, then from Equation (13), the circulating current is significantly reduced when the upper and
the lower arm currents are complementary as in Equation (21).

icirx =
irxu + irxl

2
� 0 ⇒ irxu � − irxl (21)

By considering the aforementioned assumptions:

irxu = − irx
2

irxl = + irx
2

(22)

By substituting Equation (22) in (20), the equation that calculates the upper arm voltage, uxu, in
relation with the phase x compensation current reference, i∗rx, is presented as Equation (23).

u∗xu(k) =
Lxu

2Ts
[2i ∗rx(k) − i∗rx(k − 1) + 2irxu(k)] − ux(k) (23)

The same previous steps are applicable to conclude the voltage reference final equation for the
lower MMC arm of section x as presented in (24).

u∗xl (k) = −
Lxl
2Ts

[2i ∗rx(k) − i∗rx(k − 1) − 2irxl(k)] + ux(k) (24)

The voltage reference final equations for the upper and the lower MMC arms of section y are
presented in (25) and (26). Equations (23)–(26) are the final voltage reference equations to apply the
deadbeat predictive control, considering the suppression of the MMC circulating currents. Then, these
voltages (average voltages during a switching cycle) are applied using a modulator to drive the power
semiconductor switches.

u∗yu(k) =
Lyu

2Ts
[2i ∗ry(k) − i∗ry(k − 1) + 2iryu(k)] − uy(k) (25)

u∗yl(k) = −
Lyl

2Ts
[2i ∗ry(k) − i∗ry(k − 1) − 2iryl(k)] + uy(k) (26)

4. SRPC Control Algorithm

4.1. Establishing the Compensation Current References

The compensation currents in (10) can be implemented by using the instantaneous load section
currents as in Equations (27) and (28), where, ILxa, and ILya, are the RMS active currents of the load
sections. The current components of ILxr, and ILyr, are the RMS reactive currents of the load sections.
The components of ILxh, and ILyh, are the hth order harmonic contents for both load sections, then,
∅xh and ∅yh are the corresponding phase angles of the hth order harmonic current [26,32].

iLx =
√

2 ILxa sin
(
ωt−

π
6

)
+
√

2 ILxr sin
(
ωt−

2π
3

)
+
∞∑

h=2

√

2 ILxh sin(hωt + ∅xh) (27)

iLy =
√

2 ILya sin
(
ωt−

π
2

)
+
√

2 ILyr sin(ωt−π) +
∞∑

h=2

√

2 ILyh sin
(
hωt + ∅yh

)
(28)
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Multiplying Equation (27) by sin(ωt−π/6) gives a DC current component of
√

2/2 ILxa, as
presented in Equation (29).

iLx sin
(
ωt− π

6

)
=
√

2
2 ILxa −

√
2

2 ILxa cos
(
2ωt− π

3

)
−

√
2

2 ILxr cos
(
2ωt− 5π

6

)
+

∞∑
h=2

√
2 ILxh sin(hωt + ∅xh) sin

(
ωt− π

6

) (29)

In a similar way, by multiplying Equation (28) by sin(ωt−π/2), this results in a DC current
component of

√
2/2 ILya. Summing the DC components of

√
2/2 ILxa, and

√
2/2 ILya, then multiplying

the result with the value of 2/
√

3 gives the peak value of phase x current after compensation
Ix2m =

√
2/3 (I Lx + ILy

)
(taking into consideration that load power factor is close to unitary). Extracting

the DC current component of
√

2/3 (I Lx + ILy
)

is possible after using a digital moving average low
pass filter (LPF).

On the other hand, using two single-phase enhanced phase-locked loop (E-PLL) is essential to
acquire the phase angles for both catenary voltages of ux, and uy. The E-PLL generates an output
waveform whose phase is related to the phase of an input waveform. It also generates an output
waveform that lags the input waveform by 90 degrees [33]. In this case, the instantaneous currents
of phase x and phase y after compensation are generated. Then, using Equation (10) gives the
compensation current references. The next step is to use a controller to track these reference currents,
as explained in the next paragraph Figure 5 shows the block diagram for establishing the references of
compensation currents.
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4.2. DC-Bus Voltage Balancing and Tracking of the Reference Signals

Hereafter, the symbol σ refers to both catenary sections of x and y. The symbols l, u denote the
lower and the upper MMC arms, respectively. Two PI controllers are responsible to achieve the voltage
balancing control for the MMC main DC-link voltage as shown in the control strategy of Figure 6a. The
first PI controller is used to compare the actual value of the DC-link voltage with its reference value
V∗dc. The output of this PI controller is multiplied by two synchronizing signals to obtain the dc-link
voltage regulation signals of section x and section y converters. The second PI controller balances
the voltages between the two DC-link capacitors. The output signal of this controller is added to the
compensation current references, irx

*, and iry
*. Equations (23)–(26) are implemented in the digital

controller to implement the deadbeat predictive current control methodology for circulating currents
reduction in the MMC (the source code to implement the Equations (23)–(26) in the controller is shown
in the Appendix A). This leads to generate the upper and the lower voltage reference signals for each
MMC arm.
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predictive control; (b) When using the conventional PI control.

On the other hand, and since one of the contributions of this paper is to establish a comparison
between the deadbeat predictive current control methodology and the conventional PI controller,
Figure 6b shows the DC-link voltage control and the calculation of the voltage reference signals when
using the conventional PI controller. It is noteworthy to mention that conventional stationary frame
PI controllers are not practically favorable to serve this application, since they cannot reach the zero
steady-state error, but they are good enough for the demonstration.

4.3. SM Voltages Balancing Control

Figure 7a shows an averaging voltage balancing control for the SM capacitors. This control ensures
that the voltage of each SM in the leg is close to the average voltage that is provided as a reference. It is
implemented by summing the measured SM voltages for each MMC leg and dividing the result by the
number of SMs per leg. The actual average voltage value, in this case, is calculated and compared
to a reference average voltage, V∗SM. Then, a PI controller is used to correct the difference between
the actual and the reference values [6,32]. The output of this controller is considered as a reference
for a circulating current controller, which it is implemented by summing the upper and the lower
arm currents for each converter as in (21). This controller allows a low circulating current when it is
necessary to balance the SM voltages.
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Figure 7. Voltages balancing control: (a) Averaging voltage balancing control; (b) Individual voltage
balancing control.

The individual voltage balancing control presented in Figure 7b forces the capacitor voltage of
each SM to follow its reference, which is performed by a proportional controller for each SM to act
dynamically in the balancing process in every switching period [6]. The output of the individual
voltage balancing controller is multiplied by +1 if the arm’s current direction is to charge the capacitors,
or by –1 if its direction is to discharge the capacitors (the positive directions of MMC arm currents are
presented in Figure 1).
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Figure 8 shows the voltage command generation for the two-level SM applied to a phase-shifted
PWM. The final averaging voltage control signals of Aσ, the final individual voltage control signals of
Viσ(l,u), were added to the obtained final reference waveforms of uσ*(l,u). By taking into consideration
twenty-four SMs in each MMC leg, so the total SMs number will be divided equally between the
upper and the lower arms in the same phase leg, then the arm will consist of twelve SMs (N = 13,
Thirteen-levels MMC). Consequently, the phase-shifted PWM triangular carriers in one MMC arm are
shifted 360/12 = 30◦ between each other.
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Figure 8. Command generation for each two-level SM applied to a phase-shifted PWM.

5. Simulation Results

An MMC with a few levels is sufficient for a proof-of-concept of the deadbeat predictive current
control, then, the simulation model of the SRPC consists of twenty-four SMs per each leg (13-levels),
and it was developed under PSIM v9.1 simulation tool, where the main parameters are presented
in Tables 1 and 2. The main objective is to perform a comparative study when using the deadbeat
predictive control for circulating current reduction in MMC (presented in Figure 6a), and when using
the conventional PI controller (presented in Figure 6b) to track the reference signals of irx

*, and iry
*. In

addition, and in order to show the advantages of the presented deadbeat predictive current control
methodology, simulation results are presented under transient load conditions.

Table 1. Simulation model parameters.

Parameter Symbol Value

Power grid voltage UAB 110 kV
Traction grid voltage Uσ; σ ∈

{
x, y

}
25 kV

Fundamental frequency f 50 Hz
Section x load power PLx 1.75 MW
Section y load power PLy 2.62 MW

V/V transformer turns ratio KV 110:25

Table 2. MMC parameters applied to simulation model.

Parameter Symbol Value

Number of SM per MMC arm N-1 12
DC-link voltage Vdc = Vdca + Vdcb 72 kV

Single SM voltage VSM 6 kV
Switching frequency of each SM fisw 3 kHz
Equivalent switching frequency fsw 36 kHz

MMC arm inductor Lσ(u,l); σ ∈
{
x, y

}
3 mH

SM capacitance CSM 900 µF
DC-bus capacitance Cdca = Cdcb 5 mF

The value of the MMC arm inductor directly influences the control system in terms of capability
to track the compensation current references. As the current ripples depend on the voltage applied on
the MMC arm inductor, the value of the inductor and the time that the voltage is applied, the MMC
arm inductor can be designed by considering the factors of current ripples suppression, and the speed
of signal tracking. A low value of capacitance in the SM implies high voltage ripples. However, a
high value of capacitance implies costly and bulky MMC. In this context, the previous aspects were
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considered in the selection process of the SM capacitance and the MMC arm inductors, where the
values presented in Table 2 were selected based on a trade-off between the size, cost, current ripples
and voltage ripples.

Since the power factor of the electric locomotives in high-speed trains is close to unitary and the
current harmonics are quite small [26], the high-speed railway electric locomotive is modeled as a
resistive-inductive load in parallel with an uncontrollable rectifier bridge connected to the secondary
side of the locomotive transformer, as shown in Figure 9 [26]. The output of the uncontrollable rectifier
bridge is connected to resistor R2 and inductor L2, which are in series. The turns ratio of the locomotive
transformer is 25:1.5. The locomotive model parameters are selected as R1 = 2 Ω, R2 = 3.3 Ω and
L2 = 0.8 mH. At these values, section x load power is near 1.75 MW. Section y load power is chosen to
be 150% higher than section x load power, as presented in Table 1.
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This case study presents the results for two scenarios: (a) When using the deadbeat predictive
current control methodology; (b) When replacing the Equations (23)–(26) in Figure 6a by conventional
PI controllers, as shown in Figure 6b, to correct the error signals of i∗rx − irx and i∗ry − iry, as
explained in [6]. The results for both cases are presented after considering the same control parameters
(similar PI parameters) of the MMC DC-link voltage presented in Figure 6, averaging voltage balancing
control (for each MMC leg) presented in Figure 7a, and the individual voltage balancing control (for
each SM) presented in Figure 7b.

Figure 10a shows the three-phase currents before compensation. The currents are imbalanced
and have NSC of currents. On the other hand, Figure 10b presents the same currents after the SRPC
compensates reactive power and shifts half of the active power difference between catenary sections.
At that case, the three-phase currents are balanced and sinusoidal. The catenary section currents of
iLx and iLy at unitary load power factor are presented in Figure 10c. It is important to note that the
results presented in Figure 10 are very similar when using the deadbeat predictive control or the PI
controllers. The three-phase currents before compensation, iA, iB, and iC, and the catenary section
currents, iLx, and iLy, have no relation with the SRPC system operation. The three-phase currents after
compensation, iA2, iB2, and iC2, are resulting after injecting the compensation currents of irx, and iry.
The compensation currents are calculated according to the catenary section currents of iLx, and iLy, as
in (10). In addition to that, and as has mentioned before, the circulating currents do not contribute
to the compensation currents injected by the SRPC system. Therefore, the three-phase currents after
compensation should have almost similar waveforms regardless of the controller used.
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Figure 11A presents the results when using the deadbeat predictive current control methodology
for circulating current suppression. Figure 11A(a) presents the SRPC compensation currents. Phase
x compensation current, irx, has a higher value than in phase y, iry, because catenary section y has a
higher load value, as referred in Table 1. Figure 11A(b,c) shows the MMC arm currents. Note that
subtracting the lower arm current, irσl, from the upper arm current, irσu, gives the MMC compensation
current, irσ. Figure 11A(d) shows the circulating currents in the MMC legs, icirσ. The circulating
currents were calculated according to Equation (13) and they have an average value of 5 A. This small
current component is important to accomplish the balance between the MMC SM voltages.

Figure 11B(a) presents the simulation results when using well-tuned conventional PI controllers,
as shown in Figure 6b. The compensation currents injected into the power grid presented in
Figure 11A(a) and Figure 11B(a) are similar, and have no relation with the MMC circulating currents.
However, the upper and the lower arm currents presented in Figure 11B(b,c) are quite different from
the ones presented in Figure 11A(b,c). In this case, arm currents have higher harmonic contents and
higher RMS value due to the circulating currents between the MMC legs, which have an RMS value of
9.8 A, as shown in Figure 11B(d). As a result, the circulating current component distorts the MMC
arm currents.
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The frequency spectrum of SRPC compensation currents when using the deadbeat predictive
current control methodology for circulating current suppression is presented in Figure 12A(a,b),
where only fundamental current components of 50 Hz are present. In that case, the circulating
currents frequency spectrum presented in Figure 12A(c,d) mainly shows DC components, which are
important for the SM voltage balancing control, besides regulating the main DC-link voltage. On
the other hand, Figure 12B(a,b) shows the frequency spectrum of SRPC compensation currents when
using well-tuned conventional PI controllers. The circulating currents do not contribute to the total
compensation currents. Therefore, the frequency spectrum of SRPC compensation currents presented
in Figure 12A(a,b) is similar to the one presented in Figure 12B(a,b). The circulating currents in this case
have the multiples of the second-order frequency component (100 Hz), as shown in Figure 12B(c,d).Appl. Sci. 2020, 10, x 14 of 21 
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Figure 12. Spectrum of currents when using the predictive current controller (A) and when using the
conventional PI controllers (B): (a) Compensation current of section x converter; (b) Compensation
current of section y converter; (c) Circulating current of section x converter; (d) Circulating current of
section y converter.

Figure 13A(a–d) shows the frequency spectrum of the MMC arm currents when using the deadbeat
predictive current control methodology for circulating current suppression. There are no second-order
components (100 Hz and other even-order harmonics, such as 4th, 6th, and 8th) in the MMC arm
currents, which proves the effectiveness of the deadbeat predictive control methodology for circulating
current suppression. This methodology mainly eliminates the even-order harmonics of the circulating
currents, but it does not eliminate the DC component of the circulating currents, which is important
to achieve the SM voltage balancing control. On the other hand, and due to the fact that circulating
current harmonics exist when using the conventional PI controllers, the frequency spectrum of the
MMC upper and lower arm currents, in this case, shows the orders of the even-order harmonics. This
is shown in Figure 13B(a–d).
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Figure 13. Spectrum of currents when using the predictive current controller (A) and when using the
conventional PI controllers (B): (a) Upper arm current of section x converter; (b) Lower arm current
of section x converter; (c) Upper arm current of section y converter; (d) lower arm current of section
y converter.

Figure 14A shows the MMC DC-voltages when using the deadbeat predictive current control
methodology: the DC-link voltages are presented in Figure 14A(a), the SM voltages of section x
converter (vSMx,up: for the upper arm SM voltages, vSMx,low: for the lower arm SM voltages) and section
y converter (vSMy,up: for the upper arm SM voltages, vSMy,low: for the lower arm SM voltages) are
presented in Figure 14A(b,c), respectively. Figure 14B shows the MMC DC-voltages when using the PI
controllers and when there are circulating currents in the MMC arms: the DC-link capacitor voltages in
Figure 14B(a), the SM voltages of section x converter (vSMx,up: for the upper arm SM voltages, vSMx,low:
for the lower arm SM voltages), and the SM voltages of section y converter (vSMy,up: for the upper arm
SM voltages, vSMy,low: for the lower arm SM voltages) in Figure 14B(b,c), respectively. These waveforms
confirm the effectiveness of the voltage balancing control algorithm presented in Figures 6 and 7.
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Figure 14. DC-voltages when using the predictive current controller (A) and when using the
conventional PI controllers (B): (a) DC-link capacitors voltage; (b) SM voltages of section x converter;
(c) SM voltages of section y converter.

Besides the operation in steady-state, simulation results showing the SRPC system performance
in transient conditions were also obtained. A variable load power was adopted to study the dynamic
response of the SRPC system when using the deadbeat predictive current controller. For this purpose,
Table 3 presents the load section power values during the simulation. The results do not show the
instants between 0 and 0.4 s, since the SRPC converter does not reach the steady-state operation before
the 0.4 s. Between the instants 0.4 s and 0.6 s, load section x and section y have the loads of 1.75 MW
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and 2.62 MW, respectively. However, double these power values is applied between 0.6 s to 0.8 s. After
0.8 s, both load sections have the same power of 5.24 MW.

Table 3. Section power values during the simulation.

Time 0.4 s to 0.6 s 0.6 s to 0.8 s 0.8 s to 1.0 s

Section x power 1.75 MW 3.5 MW 5.24 MW
Section y power 2.62 MW 5.24 MW 5.24 MW

Figure 15 shows the SRPC simulation results in transient conditions. The three-phase currents
before compensation are shown in Figure 15a. As shown in this case, the three-phase currents are
imbalanced and have NSC of currents. The imbalance ratio (ratio of the NSC of currents) is the smallest
between 0.8 s and 1.0 s since both load sections have the same power of 5.24 MW. Figure 15b shows
the three-phase currents after compensating reactive power and shifting the active power between
sections. The currents are balanced and the SRPC system can follow the dynamic changes of the loads.
Figure 15c shows the catenary load section currents of iLx and iLy. Between 0.4 s and 0.8 s, the load
section y has always the double of the load value of the load section x. However, after 0.8 s, both load
sections have the same loading parameters.
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Figure 16 shows the MMC currents when using the predictive current controller under load
dynamic changes. The compensation currents value of irx, and iry changes dynamically according to
the loading conditions of the load sections, as shown in Figure 16a. It is worthy to mention that, from
0.6 s to 0.8 s, the compensation currents synthesized by the SRPC system are higher than in the case
between 0.4 s and 0.6 s. This is because the power difference between the load sections is higher from
0.6 s to 0.8 s. Figure 16b,c shows the upper and the lower arm currents of the section x and section y
converter, respectively. Note that subtracting the lower arm current from the upper arm current gives
the MMC compensation current. The arm currents have mainly the fundamental frequency component
of 50 Hz and a DC current component (the circulating current), which is important to achieve the
voltage balance control of the MMC. Figure 16d shows the circulating currents, icirx, and iciry, where
these currents do not contribute to the compensation currents injected by the SRPC. The higher the
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load power difference between the load sections, the higher the circulating current component in the
MMC. At high load power difference, the MMC should inject a higher amount of power to compensate
the reactive power and shift the active power difference between the sections. This entails to higher
circulating current to balance the MMC DC-links (the MMC main DC-link and the SM DC-links) since
a higher energy is provided by the converter.
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A high value of the circulating currents increases the amplitude of the DC-voltages ripple, hence,
the DC-link voltages waveform of Figure 14A(a) have lower voltage ripples when using the deadbeat
predictive current control methodology. On the contrary, Figure 14B(a) shows higher voltage ripples of
the DC-link voltages when using the conventional PI controllers. On the other hand, the circulating
currents may lead to an easier tuning of the SM voltages balancing control and the main DC-link voltage
control. As a result, the overflow/over-suppression of the MMC circulating currents is a trade-off

between several factors, such as, higher/lower MMC power losses, higher/lower MMC equipment
power ratings, robust/fragile DC-voltages control and higher/lower DC-voltage ripples. Therefore,
attention must be considered since the over-suppression of the MMC circulating current may affect
the response of the SM voltage balancing control. The advantages of the deadbeat predictive current
control methodology for circulating current suppression can be summarized as follows:

1. Removing the AC components of the MMC circulating current, then, the circulating current
amplitude is reduced while keeping balanced SM voltages. The DC component of the circulating
current is essential to keep the SM voltages of MMC around a reference value.

2. Reducing the RMS value of the MMC arm currents.
3. Reducing the voltage ripples in the SM DC-link capacitor.
4. The suppression of circulating current does not disturb the MMC main functionality (in this study,

MMC operated as a power quality compensator for electric railway applications).

On the other hand, as specific aspects of the deadbeat predictive current control methodology
applied for circulating current suppression can be summarized as follow:

1. Being a deadbeat-based control methodology, unmodeled errors in the SRPC mathematical
model often deteriorate the system performance. These unmodeled errors may lead to make the
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calculated voltage references deviate from the expected reference values. However, the one-cycle
time delay and arm inductor resistance can be included in a more complex model.

2. The presented control methodology is only valid for fixed switching frequency applications.

6. Conclusions

This paper presented and discussed a deadbeat predictive current control methodology to suppress
the circulating currents in a modular multilevel converter (MMC) when operating as a simplified rail
power conditioner (SRPC). The presented predictive control methodology has a simple and short
computational algorithm regardless of the number of MMC submodule (SM). In other words, the
computational algorithm of the deadbeat predictive current control methodology for circulating current
suppression does not become more complex when increasing the MMC level or inserting extra SMs.
The obtained results show suppressed circulating currents (mainly the even-order harmonics), reduced
root mean square (RMS) value of the MMC arm currents, and reduced voltage ripples in the SM
DC-link capacitor. The frequency spectrum of the MMC arm currents, in that case, do not show
even-order harmonic contents, and it mainly has the fundamental frequency component of 50 Hz.
However, the presented predictive control methodology does not suppress the DC component of the
MMC circulating current, which is essential to maintain the SM voltages of MMC around a reference
value. The suppression of circulating current does not disturb the MMC main functionality as a
power quality conditioner. Furthermore, simulation results showed balanced three-phase power grid
currents without negative sequence components of currents. To some extent, although the inaccuracies
in determining the parameter values of the model may increase the control instability and often
deteriorate the system performance, the presented deadbeat predictive control can offer a new attempt
for circulating current suppression in MMC, which can expand the research ideas as well.
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Nomenclature

Aσ Output of MMC leg averaging voltage control
Cdca, Cdcb Capacitance of the MMC DC-bus capacitors
f Electrical grid fundamental frequency
fisw Individual SM switching frequency
fsw Equivalent switching frequency
iA, iB, iC Phase A, phase B and phase C instantaneous currents before compensation
IA, IB, IC Phase A, phase B and phase C RMS currents before compensation
IA1, IB1, IC1 Phase A, phase B and phase C RMS currents after active power balance

IA2, IB2, IC2
Phase A, phase B and phase C RMS currents after active power balance and
reactive power compensation

ix, iy, iz
Phase x, phase y and phase z instantaneous currents of the secondary windings of
the V/V power transformer before compensation.

Ix, Iy, Iz
Phase x, phase y and phase z RMS currents of the secondary windings of the V/V
power transformer before compensation.
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Ix1, Iy1, Iz1
Phase x, phase y and phase z instantaneous currents of the secondary windings of
the V/V power transformer after active power balance.

Ix2, Iy2, Iz2

Phase x, phase y and phase z instantaneous currents of the secondary windings of
the V/V power transformer after active power balance and reactive power
compensation.

icirx, iciry MMC instantaneous circulating current
iLx, iLy Load section instantaeous currents
ILx, ILy Load section RMS currents
ILxa, ILya RMS load section active currents
ILxh, ILyh RMS hth order harmonic current contents for both load sections
ILxr, ILyr RMS load section reactive currents
irx

*, iry
* Instantaemous compensation current references

irx, iry Instantaneous compensation currents synthesized by SRPC system
irx_err Instantaneous error current
Irxr, Iryr Reactive RMS compensation currents synthesized by SRPC
irxu, irxl Instantaneous upper and lower arm currents of MMC section x converter
iryu, iryl Instantaneous upper and lower arm currents of MMC section y converter
KV Turns ratio of the V/V power transformer
k Present sample interval
Lxu, Lxl Upper and lower arm inductors of the MMC section x converter
Lyu, Lyl Upper and lower arm inductors of the MMC section y converter
N MMC Voltage Level
N-1 Number of SM in one MMC arm
Rxu, Rxl Upper and lower arm equivalent resistance of the MMC section x converter
Ryu, Ryl Upper and lower arm equivalent resistance of the MMC section y converter
Ts Sampling period
UA, UB, UC Phase-to-line RMS voltages of the three-phase public power grid
UAC, UBC Line-to-line RMS voltages of the three-phase public power grid
ux, uy Phase x and phase y instantaneous load section voltages
Ux, Uy Phase x and phase y RMS load section voltages

uxu
*, uxl

* Instantaneous reference signals of the upper and the lower MMC arm of section x
converter

uxu, uxl Instantaneous upper and lower MMC arm voltages of section x converter

uyu
*, uyl

* Instantaneous reference signals of the upper and the lower MMC arm of section y
converter

uyu, uul Instantaneous upper and lower MMC arm voltages of section y converter
vdca, vdcb Instantaneous DC-link voltage of upper and lower arm of section x converter
Vdc

* The reference value of the DC-link voltage
Vsm

* The reference value of the SM DC-link voltage
Vsmiu, Vsmil The individual SM voltage in the upper and the lower MMC arm, respectively
Viσu, Viσl Output of MMC SM individual voltage control

Average DC-voltage in one MMC leg
vsmx,up, vsmx,low Instantaneous SM voltages of upper and lower arm of section x converter
vsmy,up, vsmy,low Instantaneous SM voltages of upper and lower arm of section y converter
∆I Active RMS compensation currents synthesized by RPC

φxh, φyh
The corresponded phase angles of the hth order harmonic current contents for
both load sections

Appendix A

//source code to implement the deadbeat control Equations (23)–(26) in the controller.
double Iry_ref, Irx_ref;
//Controller input signals (calculated using the Figure 5)
double Irx, Iry, Irxu, Irxl, Iryu, Iryl;
//arm and output currents of MMC
double Uxu_ref, Uxl_ref, Uyu_ref, Uyl_ref;
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//voltage references of the upper and the lower MMC arms
double Ux, Uy;
//load section voltages
double Irx_ref_prev, Iry_ref_prev;
//other variables
double Irx_ref1, Iry_ref1;
//other variables
double L, Ts;
//Control variables
L = 0.003;
Ts = 0.00002778;
while (1)
{
Irx_ref1 = Irx_ref
Iry_ref1 = Iry_ref
Uxu_ref = −Ux + ((L/(2 × Ts)) × ((2 × Irx_ref1) − Irx_ref_prev + (2 × Irxu));//equation 23
Uxl_ref = +Ux − ((L/(2 × Ts)) × ((2 × Irx_ref1) − Irx_ref_prev − (2 × Irxl));//equation 24
Uyu_ref = −Uy + ((L/(2 × Ts)) × ((2 × Iry_ref1) − Iry_ref_prev + (2 × Iryu));//equation 25
Uyl_ref = +Uy − ((L/(2 × Ts)) × ((2 × Iry_ref1) − Iry_ref_prev − (2 × Iryl));//equation 26
Irx_ref_prev = Irx_ref1;
Iry_ref_prev = Iry_ref1;
while (!new_values);
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