42 research outputs found

    A Novel Pectin Material: Extraction, Characterization and Gelling Properties

    Get PDF
    A novel pectin was acid extracted from chickpea husk (CHP). CHP presented a 67% (w/w) of galacturonic acid, an intrinsic viscosity of 374 mL/g and a viscosimetric molecular weight of 110 kDa. Fourier transform infrared spectroscopy spectrum of CHP indicated a degree of esterification of about 10%. The CHP-calcium system formed ionic gels with a storage (G′) modulus of 40 Pa and gel set time (G′ > G″) of 3 min at 1% (w/v), and a G′ of 131 Pa and gel set time of 1 min at 2% (w/v). The G′ of CHP gels was not greatly affected by temperature. The results attained suggest that chickpea husk can be a potential source of a gelling pectin material

    Enzymatic Cross-Linking of Alkali Extracted Arabinoxylans: Gel Rheological and Structural Characteristics

    Get PDF
    Ferulated arabinoxylans were alkali-extracted from wheat bran at different incubation times (0.0, 0.5, 1.0, 1.5 and 2.0 h). Wheat bran ferulated arabinoxylans (WBAX) arabinose-to-xylose ratio, ferulic acid content, intrinsic viscosity and viscosimetric molecular weight values decreased as the incubation time of extraction increased. WBAX enzymatic cross-linking capability was affected by incubation time while an increase in WBAX concentration from 5 to 6% (w/v) favored gelation. The WBAX gels formed presented a macroporous structure with mesh size ranging from 40 to 119 nm and hardness values varying from 1.7 to 5 N

    Gelation of Arabinoxylans from Maize Wastewater — Effect of Alkaline Hydrolysis Conditions on the Gel Rheology and Microstructure

    Get PDF
    The purpose of this research was to extract arabinoxylans (AX) from maize wastewater generated under different maize nixtamalization conditions and to investigate the polysaccharide gelling capability, as well as the rheological and microstructural characteristics of the gels formed. The nixtamalization conditions were 1.5 hours of cooking and 24 hours of alkaline hydrolysis (AX1) or 30 minutes cooking and 4 hours of alkaline hydrolysis (AX2). AX1 and AX2 presented yield values of 0.9% and 0.5% (w/v), respectively. Both AX samples presented similar molecular identity (Fourier Transform Infra-Red) and molecular weight distribution but different ferulic acid (FA) content. AX1 and AX2 presented gelling capability under laccase exposure. The kinetics of gelation of both AX samples was rheologically monitored by small amplitude oscillatory shear. The gelation profiles followed a characteristic kinetics with an initial increase in the storage modulus (G\u27) and loss modulus (G") followed by a plateau region for both gels. AX1 presented higher G\u27 than AX2. In scanning electron microscopy (SEM) images, both gels present an irregular honeycomb microstructure. The lower FA content in AX2 form gels presenting minor elasticity values and a more fragmented microstructure. These results indicate that nixtamalization process conditions can modify the characteristics of AX gels

    Pectin and Pectin-Based Composite Materials: Beyond Food Texture

    No full text
    Pectins are plant cell wall natural heteropolysaccharides composed mainly of α-1-4 d-galacturonic acid units, which may or may not be methyl esterified, possesses neutral sugars branching that harbor functional moieties. Physicochemical features as pH, temperature, ions concentration, and cosolute presence, affect directly the extraction yield and gelling capacity of pectins. The chemical and structural features of this polysaccharide enables its interaction with a wide range of molecules, a property that scientists profit from to form new composite matrices for target/controlled delivery of therapeutic molecules, genes or cells. Considered a prebiotic dietary fiber, pectins meetmany regulations easily, regarding health applications within the pharmaceutical industry as a raw material and as an agent for the prevention of cancer. Thus, this review lists many emergent pectin-based composite materials which will probably palliate the impact of obesity, diabetes and heart disease, aid to forestall actual epidemics, expand the ken of food additives and food products design

    Efecto prebiótico de los Arabinoxilanos y los Arabinoxilo-Oligosacáridos y su relación con la promoción de la buena salud

    No full text
    Arabinoxylans are polysaccharides present in grains and as such, are part of dietary fiber intake in humans and animals. Enzymatic or chemical hydrolysis of arabinoxylans produces arabinoxilo-oligosaccharides, which can be branched or unbranched with arabinose. The objective of this work was to describe the potential use of arabinoxylans and arabinoxylan-oligosaccharides as prebiotics to promote good health, by selective enhancement of beneficial colonic microbiota growth and metabolic activity. The information generated indicates that arabinoxylans and arabinoxylan-oligosaccharides act by modifying the microbiota selectively and stimulate the biological response favoring good health in the host, by antio-obesity effect, glucose regulator, antioxidant, anticancer, immunomodulator, with similar or better results than recognized prebiotics. However, it is necessary to expand the knowledge we have about arabinoxylans in order to support their application in the food, pharmaceutical, and biomedical industry.Los arabinoxilanos son polisacáridos presentes en los granos de los cereales, y como tales, forman parte de la fibra dietética consumida por humanos y animales. La hidrólisis química o enzimática de los arabinoxilanos produce arabinoxilo-oligosacáridos, los cuales pueden estar ramificados o no, con arabinosa. El objetivo de este trabajo fue exponer el uso potencial de los arabinoxilanos y arabinoxilo-oligosacáridos, como prebióticos, y el efecto de su consumo en la promoción de la buena salud, al estimular selectivamente el crecimiento y actividad metabólica de la microbiótica colónica benéfica. La información generada indica que los arabinoxilanos y arabinoxilo-oligosacáridos actúan modificando la microbiota de manera selectiva, y estimulan la respuesta biológica, favoreciendo la buena salud del hospedero, por su efecto antiobesogénico, regulador de la glucosa, antioxidante, anticancerígeno e inmunomodulador, con resultados similares o mejores en relación a prebióticos reconocidos. No obstante, es necesario ampliar el conocimiento que se tiene de ellos para sustentar su aplicación en la industria alimentaria, farmacéutica o biomédica

    Effect of porous structure and spreading pressure on the storage stability of red onion microcapsules produced by spray freezing into liquid cryogenic and spray drying

    No full text
    8 páginasRed onion microcapsules were produced by spray freezing into liquid cryogenic (SFLC) and spray drying (SD) and their anthocyanin contents were evaluated kinetically at different water activities () at 35 °C. The spreading pressure-area isotherms were determined at 35 °C. These isotherms provide important information about the different phases of adsorbed water present in SD and SFLC capsules, which can be related to minimal integral entropy and to chemical stability during storage. The porosity of the microcapsules was examined using low-temperature adsorption of nitrogen. The maximum anthocyanin stability occurred at from 0.108 to 0.318, and 0.108 to 0.515, for SD and SFLC, respectively. SD products were nonporous whereas SFLC were mesoporous. The tendency to contraction of the adsorbed water film was compared with the minimum integral entropy and was proposed as a new stability criterion to predict suitable storage conditions of dehydrated foods

    Fermentation of Ferulated Arabinoxylan Recovered from the Maize Bioethanol Industry

    No full text
    International audienceMaize by-product from the bioethanol industry (distiller’s dried grains with solubles, DDGS) is a source of ferulated arabinoxylan (AX), which is a health-promoting polysaccharide. In the present study, AX from DDGS was fermented by a representative colonic bacterial mixture (Bifidobacterium longum, Bifidobacterium adolescentis, and Bacteroides ovatus), and the effect of the fermented AX (AX-f) on the proliferation of the cell line Caco-2 was investigated. AX was efficiently metabolized by these bacteria, as evidenced by a decrease in the polysaccharide molecular weight from 209 kDa to < 50 kDa in AX-f, the release of ferulic acid (FA) from polysaccharide chains (1.14 µg/mg AX-f), and the short-chain fatty acids (SCFA) production (277 µmol/50 mg AX). AX-f inhibited the proliferation of Caco-2 cells by 80–40% using concentrations from 125–1000 µg/mL. This dose-dependent inverse effect was attributed to the increased viscosity of the media due to the polysaccharide concentration. The results suggest that the AX-f dose range and the SCFA and free FA production are key determinants of antiproliferative activity. Using the same polysaccharide concentrations, non-fermented AX only inhibited the Caco-2 cells proliferation by 8%. These findings highlight the potential of AX recovered from the maize bioethanol industry as an antiproliferative agent once fermented by colonic bacteri

    Maize bran gum: extraction, characterization and functional properties

    No full text
    Correspondance: [email protected] audienceA water-soluble maize bran gum (MBG) was alkali-extracted under mild conditions from maize bran. MBG presented an arabinoxylan (AX) content of 74% (w/w), a ferulic acid content of 0.34 mu g/mg MBG, an AIX ratio of 0.85 and an intrinsic viscosity of 208 ml/g. Gelling and emulsifying capabilities of MBG at different concentrations were investigated. Gels were obtained from this MBG by laccase covalent cross-linking of ferulic acid leading to the formation of diferulic (di-FA) and triferulic (tri-FA) acid. Gel hardness increased from 0.32 to 0.81 N as the MBG concentration changed from I to 2% (w/v) while the di-FA and tri-FA contents remained constant (0.030 and 0.015 mu g/mg MBG, respectively). The emulsion stability index (ESI) of oil-in-water containing different MBG concentrations was also investigated. ESI ranged from 0.01 to 0.20 as the MBG content in the mixture increased from 0% to 1% (w/v

    Component Analysis and Free Radicals Scavenging Activity of Cicer arietinum L. Husk Pectin

    No full text
    A pectin (CAP) was extracted from the husk of Cicer arietinum L.. Monosaccharide analysis of CAP revealed the dominance of galacturonic acid and smaller amounts of galactose, arabinose, rhamnose, glucose, xylose and mannose. Viscosimetric analysis showed that the intrinsic viscosity ([η]) and the molecular weight (MW) of CAP were 296 mL/g and 105 kDa, respectively. The degree of esterification (DE = 10%) was determined by FTIR spectroscopy. CAP exhibited a dose-dependent free radical scavenging activity, as shown by its DPPH radical inhibition. At 1.0 mg/mL CAP exhibited a scavenging rate of 29% on DPPH radicals. The evaluation of antioxidant activity suggested that CAP had good potential for DPPH radical scavenging activity and should be explored as a novel potential antioxidant
    corecore