325 research outputs found

    New flow relaxation mechanism explains scour fields at the end of submarine channels

    Get PDF
    Particle-laden gravity flows, called turbidity currents, flow through river-like channels across the ocean floor. These submarine channels funnel sediment, nutrients, pollutants and organic carbon into ocean basins and can extend for over 1000’s of kilometers. Upon reaching the end of these channels, flows lose their confinement, decelerate, and deposit their sediment load; this is what we read in textbooks. However, sea floor observations have shown the opposite: turbidity currents tend to erode the seafloor upon losing confinement. Here we use a state-of-the-art scaling method to produce the first experimental turbidity currents that erode upon leaving a channel. The experiments reveal a novel flow mechanism, here called flow relaxation, that explains this erosion. Flow relaxation is rapid flow deformation resulting from the loss of confinement, which enhances basal shearing of the turbidity current and leads to scouring. This flow mechanism plays a key role in the propagation of submarine channel systems

    A comprehensive study of noble gases and nitrogen in Hypatia, a diamond-rich pebble from SW Egypt

    Get PDF
    This is a follow-up study of a work by Kramers et al. (2013) on an unusual diamond-rich rock found in the SW side of the Libyan Desert Glass strewn field. This pebble, called Hypatia, is composed of almost pure carbon. Transmission Electron Microscopy and X-ray diffraction results reveal that Hypatia is made of defect-rich diamond containing lonsdaleite and deformation bands. These characteristics are compatible with an impact origin on Earth and/or in space. We analyzed concentrations and isotopic compositions of all five noble gases and nitrogen in several mg sized Hypatia samples. These data confirm that Hypatia is extra-terrestrial. The sample is rich in trapped noble gases with an isotopic composition close to the meteoritic Q component. 40Ar/36Ar ratios in individual steps are as low as 0.4. Concentrations of cosmic-ray produced 21Ne correspond to a nominal cosmic-ray exposure age of ca. 0.1 Myr if produced in a typical m-sized meteoroid. Such an atypically low nominal exposure age suggests high shielding in a considerably larger body. In addition to the Xe-Q composition, an excess of radiogenic 129Xe (from the decay of extinct 129I) is observed (129Xe/132Xe = 1.18 +/- 0.03). Two N components are present, an isotopically heavy component ({\delta}15N = +20 permil) released at low temp. and a major light component ({\delta}15N = -110 permil) at higher temp. This disequilibrium in N suggests that the diamonds in Hypatia were formed in space. Our data are broadly consistent with concentrations and isotopic compositions of noble gases in at least three different types of carbon-rich meteoritic materials. However, Hypatia does not seem to be related to any of these materials, but may have sampled a similar cosmochemical reservoir. Our study does not confirm the presence of exotic noble gases that led Kramers et al. to propose that Hypatia is a remnant of a comet that impacted the Earth

    Direct monitoring of active geohazards: emerging geophysical tools for deep-water assessments

    Get PDF
    Seafloor networks of cables, pipelines, and other infrastructure underpin our daily lives, providing communication links, information, and energy supplies. Despite their global importance, these networks are vulnerable to damage by a number of natural seafloor hazards, including landslides, turbidity currents, fluid flow, and scour. Conventional geophysical techniques, such as high-resolution reflection seismic and side-scan sonar, are commonly employed in geohazard assessments. These conventional tools provide essential information for route planning and design; however, such surveys provide only indirect evidence of past processes and do not observe or measure the geohazard itself. As such, many numerical-based impact models lack field-scale calibration, and much uncertainty exists about the triggers, nature, and frequency of deep-water geohazards. Recent advances in technology now enable a step change in their understanding through direct monitoring. We outline some emerging monitoring tools and how they can quantify key parameters for deepwater geohazard assessment. Repeat seafloor surveys in dynamic areas show that solely relying on evidence from past deposits can lead to an under-representation of the geohazard events. Acoustic Doppler current profiling provides new insights into the structure of turbidity currents, whereas instrumented mobile sensors record the nature of movement at the base of those flows for the first time. Existing and bespoke cabled networks enable high bandwidth, low power, and distributed measurements of parameters such as strain across large areas of seafloor. These techniques provide valuable new measurements that will improve geohazard assessments and should be deployed in a complementary manner alongside conventional geophysical tools

    What controls submarine channel development and the morphology of deltas entering deep-water fjords?

    Get PDF
    River deltas and associated turbidity current systems produce some of the largest and most rapid sediment accumulations on our planet. These systems bury globally significant volumes of organic carbon and determine the runout distance of potentially hazardous sediment flows and the shape of their deposits. Here we seek to understand the main factors that determine the morphology of turbidity current systems linked to deltas in fjords, and why some locations have well developed submarine channels whilst others do not. Deltas and associated turbidity current systems are analysed initially in five fjord systems from British Columbia in Canada, and then more widely. This provides the basis for a general classification of delta and turbidity current system types, where rivers enter relatively deep (>200 m) water. Fjord-delta area is found to be strongly bimodal. Avalanching of coarse-grained bedload delivered by steep mountainous rivers produces small Gilbert-type fan- deltas, whose steep gradient (11°-25°) approaches the sediment’s angle of repose. Bigger fjord-head deltas are associated with much larger and finer-grained rivers. These deltas have much lower gradients (1.5°-10°) that decrease offshore in a near exponential fashion. The lengths of turbidity current channels are highly variable, even in settings fed by rivers with similar discharges. This may be due to resetting of channel systems by delta-top channel avulsions or major offshore landslides, as well as the amount and rate of sediment supplied to the delta front by rivers

    Author Correction: Rapidly-migrating and internally-generated knickpoints can control submarine channel evolution (Nature Communications, (2020), 11, 1, (3129), 10.1038/s41467-020-16861-x)

    Get PDF
    © 2020, The Author(s). The original version of this Article contained an error in the labelling of the cross-section in Fig. 2g and the vertical axis in Fig. 2b. This has been corrected in both the PDF and HTML versions of the Article

    Controls on upstream-migrating bed forms in sandy submarine channels

    Get PDF
    Submarine channels parallel river channels in their ability to transport sediment. However, in contrast to rivers, sediment transport and bed-form development in submarine channels are less well understood. Many steep (>1°), sandy submarine channels are dominated by upstream-migrating bed forms. The flow conditions required to form these upstream-migrating bed forms remain debated because the interactions between turbidity currents and active bed forms are difficult to measure directly. Consequently, we used a depth-resolved numerical model to test the role of flow parameters that are hypothesized to control the formation of upstream-migrating bed forms in submarine channels. While our modeling results confirmed the importance of previously identified flow parameters (e.g., densiometric Froude number), we found that basal sediment concentration in turbidity currents is the strongest predictor of upstream-migrating bed-form formation. Our model shows how locally steep gradients enable high sediment concentrations (average >5 vol%) in the basal parts of flows, which allow the development of cyclic step instabilities and their associated bed forms. This new insight explains the previously puzzling observation that upstream-migrating bed forms are abundant in proximal, steep, sandy reaches of submarine channels, while their occurrence becomes more intermittent downslope

    Simultaneous analysis of abundance and isotopic composition of nitrogen, carbon, and noble gases in lunar basalts: insights into interior and surface processes on the Moon

    Get PDF
    Simultaneous static-mode mass spectrometric measurements of nitrogen, carbon, helium, neon, and argon extracted from the same aliquot of sample by high-resolution stepped combustion have been made for a suite of six lunar basalts. Collecting abundance and isotopic data for several elements simultaneously from the same sample aliquot enables more detailed identification of different volatile components present in the basalts by comparing release patterns for volatiles across a range of temperature steps. This approach has yielded new data, from which new insights can be gained regarding the indigenous volatile inventory of the Moon. By taking into account N and C data for mid-temperature steps, unaffected by terrestrial contamination or cosmogenic additions, it is possible to determine the indigenous N and C signatures of the lunar basalts. With an average ή15N value of around +0.35‰, the indigenous N component seen in these samples is similar within error to other (albeit limited in number) isotopic measurements of indigenous lunar N. Average C/N ratios for indigenous volatiles in these six basalt samples are much lower than those of the terrestrial depleted mantle, or bulk silicate Earth, possibly suggesting much less C in the lunar interior, relative to N, than on Earth. Cosmogenic isotopes in these samples are well-correlated with published sample exposure ages, and record the rate of in situ production of spallogenic volatiles within material on the lunar surface

    Volcanic CO2 output at the Central American subduction zone inferred from melt inclusions in olivine crystals from mafic tephras

    Get PDF
    The volatile contents of olivine‐hosted (Fo89–71) melt inclusion glasses in rapidly quenched mafic tephras from volcanic front volcanoes of the Central American Volcanic Arc (CAVA) in Guatemala, Nicaragua, and Costa Rica, were analyzed by secondary ion mass spectrometry (SIMS) in order to derive the minimum eruptive output of CO2, along with H2O, Cl, and S. Details of the analytical method are provided that establish melt inclusion CO2 analyses with the Cameca ims6f at the Helmholtz Centre Potsdam. The highest CO2 concentrations (up to 1800 mg/g) are observed in Nicaraguan samples, while melt inclusions from Guatemala and Costa Rica have CO2 contents between 50 and 500 mg/g. CO2 does not positively covary with sediment/slab fluid tracers such as Ba/La, Ba/Th, or U/La. Instead, the highest CO2 concentrations occur in the inclusions with the most depleted incompatible element compositions and low H2O, approaching the composition of mid‐ocean ridge basalts (MORBs), whereas the most H2O‐rich inclusions are relatively CO2‐poor (<800 mg/g). This suggests that CO2 degassing was more extensive in the melts with the highest slab contribution. CO2/Nb ratios in the least degassed CAVA melt inclusions are similar to those of primitive MORBs. These are interpreted here as recording a minimum CO2 output rate from the mantle wedge, which amounts to 2.8 × 104 g/s for the ∌1100 km long CAVA. Previously published estimates from quiescent degassing and numerical modeling, which also encompassed the slab contribution, are 3 times higher. This comparison allows us to estimate the proportion of the total CO2 output derived from the mantle wedge

    Bedforms and sedimentary structures related to supercritical flows in glacigenic settings

    Get PDF
    Upper-flow-regime bedforms, including upper-stage-plane beds, antidunes, chutes-and-pools and cyclic steps, are ubiquitous in glacigenic depositional environments characterized by abundant meltwater discharge and sediment supply. In this study, the depositional record of Froude near-critical and supercritical flows in glacigenic settings is reviewed, and similarities and differences between different depositional environments are discussed. Upper-flow-regime bedforms may occur in subglacial, subaerial and subaqueous environments, recording deposition by free-surface flows and submerged density flows. Although individual bedform types are generally not indicative of any specific depositional environment, some observed trends are similar to those documented in non-glacigenic settings. Important parameters for bedform evolution that differ between depositional environments include flow confinement, bed slope, aggradation rate and grain size. Cyclic-step deposits are more common in confined settings, like channels or incised valleys, or steep slopes of coarse-grained deltas. Antidune deposits prevail in unconfined settings and on more gentle slopes, like glacifluvial fans, sand-rich delta slopes or subaqueous (ice-contact) fans. At low aggradation rates, only the basal portions of bedforms are preserved, such as scour fills related to the hydraulic-jump zone of cyclic steps or antidune-wave breaking, which are common in glacifluvial systems and during glacial lake-outburst floods and (related) lake-level falls. Higher aggradation rates result in increased preservation potential, possibly leading to the preservation of complete bedforms. Such conditions are met in sediment-laden jökulhlaups and subaqueous proglacial environments characterized by expanding density flows. Coarser-grained sediment leads to steeper bedform profiles and highly scoured facies architectures, while finer-grained deposits display less steep bedform architectures. Such differences are in part related to stronger flows, faster settling of coarse clasts, and more rapid breaking of antidune waves or hydraulic-jump formation over hydraulically rough beds. © 2020 The Authors. Sedimentology published by John Wiley & Sons Ltd on behalf of International Association of Sedimentologist
    • 

    corecore