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Abstract 

 This is a follow-up study of a work by Kramers et al. (2013) on a very unusual 

diamond-rich rock fragment found in the area of south west Egypt in the south-western side 

of the Libyan Desert Glass strewn field. This pebble, called Hypatia, is composed of almost 

pure carbon. Transmission Electron Microscopy (TEM) and X-ray diffraction (XRD) results 

reveal that Hypatia is mainly made of defect-rich diamond containing lonsdaleite and multiple 

deformation bands. These characteristics are compatible with an impact origin on Earth 

and/or in space. We also analyzed concentrations and isotopic compositions of all five noble 

gases and nitrogen in several ~mg sized Hypatia samples. These data confirm the conclusion 

by Kramers et al. (2013) that Hypatia is extra-terrestrial. The sample is relatively rich in 

trapped noble gases with an isotopic composition being close to the Q component found in 

many types of meteorites. 40Ar/36Ar ratios in individual steps are as low as 0.4 ± 0.3. Cosmic-

ray produced "cosmogenic" 21Ne is present in concentrations corresponding to a nominal 

cosmic-ray exposure (CRE) age of roughly 0.1 Myr if produced in a typical meter-sized 

meteoroid. Such an atypically low nominal CRE age suggests high shielding in a considerably 

larger body. In addition to the Xe-Q composition, an excess of radiogenic 129Xe (from the 

decay of short-lived radioactive 129I) is observed (129Xe/132Xe = 1.18 +/- 0.03). Two 

isotopically distinct N components are present, an isotopically heavy component (δ15N ~ 

+20‰) released at low temperatures and a major isotopically light component (δ15N ~ -

110‰) at higher temperatures. This disequilibrium in N suggests that the diamonds in 

Hypatia were formed in space rather than upon impact on Earth (δ15Natm = 0 ‰). All our data 

are broadly consistent with concentrations and isotopic compositions of noble gases in at least 

three different types of carbon-rich meteoritic materials: carbon-rich veins in ureilites, 

graphite in acapulcoites/lodranites and graphite nodules in iron meteorites. However, Hypatia 

does not seem to be directly related to any of these materials, but may have sampled a similar 

cosmochemical reservoir. Our study does not confirm the presence of exotic noble gases (e.g. 

G component) that led Kramers et al. (2013) to propose that Hypatia is a remnant of a comet 

nucleus that impacted the Earth. 

keywords: meteorites, noble gases, nitrogen, phase Q, graphite 
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1. Introduction 

In 1996 a very unusual ~30 g sized pebble was found in the Libyan Desert Glass strewn field 

where abundant fragments of impact-related silica-rich glass are found (Barakat, 2012; 

Reimold and Koeberl, 2014). This brittle black stone (Fig. S1) consists of ~70 wt. % carbon, 

and has a hardness comparable to diamond, reminiscent of carbonados. Kramers et al. (2013) 

named the stone "Hypatia" in honor of a 4th century female philosopher from Alexandria 

(Egypt). These authors performed an exploratory analytical study on Hypatia, including XRD, 

SEM, Raman spectroscopy, TEM, and analyses of C and noble gas isotopes motivated by the 

fact that this stone was found in the area of the Libyan Desert Glass (LDG), the origin of 

which remains enigmatic (Reimold and Koeberl, 2014). Noble gas isotope analysis is central 

to the study of meteorites because these rocks formed from multiple components with distinct 

noble gas isotopic signatures that help to constrain their origin and evolution. Among these 

components, the so-called Q phase dominates the budget of heavy noble gases (Ar, Kr Xe) in 

chondrites originating from the asteroid belt. Although the chemical nature (Marrocchi et al., 

2015) and mode of formation (Kuga et al., 2015; Ott, 2014) of Q are debated, this component 

is chemically and isotopically fractionated relative to the isotopic composition of the Solar 

Wind (Meshik et al., 2014) possibly due to ionization processes (Marrocchi et al., 2011) and 

is ubiquitous in pristine to moderately metamorphosed chondrites (Busemann et al., 2000). 

Other minor noble gas components (e.g. the P3 and G components) are found in presolar 

materials (for example SiC) trapped in meteorites (Ott, 2014). These components are derived 

from sources external to the solar system and carry isotopic signatures characteristic of 

nucleosynthesis in stars. Kramers et al. (2013) concluded that Hypatia is extra-terrestrial, 

based on 40Ar/36Ar ratios as low as about 40. They noted that O/C ratios (0.19 - 0.51) in 

Hypatia are higher than in chondritic Insoluble Organic Matter (IOM). In addition, they 

reported that the trapped Ne, Kr, and Xe in Hypatia indicate the occurrence of the 

nucleosynthetic P3 and G components of presolar origin known from meteorites (Ott, 2014), 

while the Q (and HL) components ubiquitous in chondrites were absent in Hypatia. The 

combined evidence led them to conclude that Hypatia did not originate in the asteroid belt 

where chondrites likely formed. They suggested instead that it formed in a more external 

region of the solar accretion disk, such as the Kuiper Belt, where presolar components might 

be more abundant, i.e., that Hypatia could be of cometary origin. They further proposed that 

the airburst of the parent comet of Hypatia resulted in the formation of the Libyan Desert 

Glass. This interpretation was subsequently criticized by Reimold and Koeberl (2014), 
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although a cometary origin for the Libyan Desert Glass has been advocated many times, 

starting with Urey's seminal paper (Urey, 1957). 

In this work we extend the study by Kramers et al. (2013) with isotopic analyses of all five 

noble gases in several mg-sized fragments of Hypatia in two different laboratories (CRPG 

Nancy, France and ETH Zürich, Switzerland) and with a nitrogen isotope investigation 

performed both at CRPG (Nancy) and IPG-Paris. We also describe results from X-ray 

diffraction (XRD) experiments and transmission electron microscopy (TEM) observations 

performed at the University of Jena (Germany). An attempt to determine the oxygen isotopic 

composition in Hypatia by the Nancy Cameca 1280 ion probe failed because of the reduced 

size of oxygen-bearing phases and because of the presence of contaminants and important 

amounts of water. This new study confirms and provides new evidence for the earlier 

conclusion that Hypatia is a fascinating new type of extra-terrestrial material. In contrast to 

the exploratory work reported by Kramers et al. (2013), we did find noble gases with isotopic 

signatures closely resembling the Q component. We also found nitrogen with an isotopic 

signature clearly distinct from primitive chondrites and closely resembling those of various 

differentiated meteoritic materials. In particular, we compare our data with noble gas and 

nitrogen signatures in three known types of carbon-rich extraterrestrial materials: carbon-rich 

veins in ureilite meteorites, graphite nodules in iron meteorites, and carbon-rich lithologies in 

acapulcoites and lodranites, and we discuss a possible link of Hypatia with each of these 

materials. 

2. Samples and methods 

X-ray diffraction and Transmission Electron Microscopy (TEM) techniques used in this study 

are described in the supplementary material. 

2.1 Noble gas and nitrogen analyses 

Table 1 indicates the samples analyzed and the analytical techniques used in Nancy, Zürich 

and Paris. Samples are from the same group of samples (≈1 g) as used by Kramers et al. 

(2013). In Nancy, noble gases and nitrogen were extracted conjointly in samples H-N1, H-N2 

and H-N3 upon heating in high-vacuum with an infra-red (IR) CO2 laser (Humbert et al., 

2000). Extracted gases were subsequently split into an aliquot for nitrogen analysis and 

another one for noble gas analysis. The nitrogen was purified in a glass line and analyzed 

using a VG 5400 mass spectrometer following the procedure reported in (Zimmermann et al., 
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2009). The noble gas aliquot was purified using Ti-sponge getters and Ar was trapped on 

charcoal held at liquid N2 temperature. Following N analysis, Ne and Ar were sequentially 

analyzed using the same mass spectrometer. Sample H-N4 was heated in five extraction steps 

(400, 850, 1400, 1800 and 2200 °C) in a Ta crucible using an induction furnace. Extracted 

gases were purified on three Ti-sponge getters. Xe and Kr were trapped on a quartz tube 

cooled to 77 K. Xe and Kr were then sequentially analyzed on a Helix MC Plus mass 

spectrometer. Mass spectrometer sensitivity was calibrated with known amounts of 

atmospheric noble gases following the same procedure as reported in (Marty and 

Zimmermann, 1999). 

In Paris, the nitrogen content and isotope composition of two Hypatia diamond samples were 

investigated following methods described previously (Boyd et al., 1995). Importantly, the two 

analyzed Hypatia pieces (about 1.5 mg) were pre-combusted, over 6 hours at 600°C in order 

to remove any organic matter and/or graphite and, therefore, ensuring that the analyzed 

carbon phase consisted essentially of pure diamonds. The two samples were weighed before 

their analysis and CO2 yield was used to determined the abundance of carbon. 

In Zürich, noble gases were extracted from samples Z1 and Z2 with a 30 W continuous-wave 

IR laser (λ= 1064 nm) heating the samples for about 60 s (Vogel et al., 2003). Noble gases 

in samples Z3, Z4, and Z5 were extracted at ~1800 °C during 30 min in a Mo crucible heated 

by electron bombardment. For all analyses, the respective sample chamber had been 

preheated at 100 °C for ~24 hours to remove adsorbed atmospheric gases. Extracted gases 

were cleaned by various getters before Ar was frozen onto charcoal at liquid nitrogen 

temperature. The He-Ne and the Ar fractions were sequentially analyzed in a custom-built 

sector-field noble gas mass spectrometer equipped with an ion counting multiplier and a 

Faraday detector. Additional details of the analytical procedure are given in (Wieler et al., 

1989). An additional step after the main extraction was done for samples H-Z1, H-Z2, and H-

Z3 and demonstrated complete gas extraction during the main step. Blank gas amounts for the 

laser extractions (H-Z1 and H-Z2) were determined by firing the laser at an empty spot of the 

sample holder for 60 s. For the furnace extractions (for H-Z3 to H-Z5) a piece of Al foil of the 

same mass as used to wrap samples was melted at the same temperature and for the same 

duration as the samples. Mass spectrometer sensitivity was calibrated with known amounts of 

pure standard gases as described in (Heber et al., 2009). 
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3. Results 

3.1 XRD results and TEM observations 

The X-ray diffraction pattern of Hypatia is characterized by broad, low-intensity peaks 

(Figure S2) indicating the poor crystallinity of the material. A comparison with the pattern of 

well-crystallized synthetic diamond shows that the main X-ray reflections in the pattern of the 

Hypatia sample are fully compatible with the diamond structure. X-ray diffraction tails on 

both sides of the 111 diamond peak were also observed and can be interpreted as the 1010 

and 1011 peaks of the hexagonal high-pressure polymorph lonsdaleite. The position of the 

0002 peak of lonsdaleite would thereby coincide with the 111 peak of diamond.  The lattice 

parameter a refined from the X-ray diffraction pattern of the Hypatia diamond is 3.57 Å, 

identical to the lattice constant of normal diamond. Besides diamond and lonsdaleite no other 

phase could be identified on the basis of X-ray diffraction. 

X-ray line broadening analysis of Hypatia was additionally used to obtain clues to the causes 

for the poor crystallinity. This analysis revealed that the limited long-range order of Hypatia 

diamond is not only due to small crystallite size, but is also partly attributable to considerable 

internal strain, indicative of numerous lattice defects. 

The defect microstructure was, therefore, examined by TEM. Conventional TEM imaging 

shows that Hypatia is composed of numerous diamond grains with sizes on the order of a few 

micrometers. Some grains exhibit multiple 100 nm wide bands with alternating diffraction 

contrast (Figure S3). Although this alternating contrast suggests a twin configuration, electron 

diffraction disproves one such possibility for the diamond structure.  Similar multiple bands 

have only been found in impact diamonds from various craters and could be attributed to 

shock-induced mechanical twins of the graphite precursor (Langenhorst et al., 1999). The 

multiple twinning must have occurred just before the solid-state transformation when the 

shock wave entered into graphite (Langenhorst and Deutsch, 2012). 

High-resolution TEM images reveal that diamond is associated with some graphite 

discernible by the typical 0001 spacing of 3.35 Å. The graphite can be onion-shaped and 

covers the surface of diamond (see Fig. S4 in supplementary material). The graphite-like 

areas are mostly < 10 nm in size explaining why they were not detected by X-ray diffraction.  
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The coating of diamond surfaces with graphite and the absence of an epitactic orientation 

relationship between the two phases (e.g. (0001)graphite does not coincide with(111)diamond) 

suggest that the graphite flakes are probably a result of retrograde annealing of diamond. 

3.2 Noble gas and nitrogen results 

Concentrations and isotopic compositions of noble gases and nitrogen extracted in Nancy, 

Zürich and Paris are shown in Tables 2, 3 and S1 (supplementary material) respectively. 

Abundances and isotopic composition of nitrogen and carbon extracted in Paris are shown in 

supplementary material (Table S1). In this section we will first discuss isotopic compositions 

and then gas abundances and elemental ratios. 

3.2.1 Helium 

The 3He/4He ratios in all five Hypatia “Z” samples are very similar to values observed for  

He-Q, with a weighted average of (1.55 ± 0.11) × 10-4. While this value is slightly higher than 

the  “canonical value” of He-Q of ~1.23 × 10-4 (Busemann et al., 2000; Ott, 2014) values 

around ~1.6 × 10-4 for He-Q-rich samples have also been reported (Wieler et al., 1991). 

Remarkably, the measured 3He/4He ratios do not vary systematically with 4He concentration 

(the somewhat higher value of sample H-Z1 of 2.1 × 10-4 has an untypically large 

uncertainty). This also suggests that He in Hypatia is essentially trapped and of Q origin, as 

otherwise contributions from cosmic-ray produced (3He-rich) and radiogenic 4He in each of 

the samples would have to add up fortuitously to a Q-like ratio. This seems very unlikely, 

although it needs to be noted that the 4He/36Ar ratios in Hypatia (~15-20) are higher than the 

mean value of ≈5 for Q (Ott, 2014). However, 4He/36Ar ratios in Q vary over a wide range of 

values (1-11; (Busemann et al., 2000)). To explain this latter observation by variable 

concentrations of radiogenic 4He in different pieces of Hypatia would require U and Th 

concentrations of roughly half the values in ordinary chondrites (assuming an age of Hypatia 

of 4.56 Ga). This is unlikely given that only a few percent of Hypatia is non-carbonaceous 

material. Together with the fact that all analyzed samples show similar 3He/4He ratios, we can 

thus exclude that the Q-like value of He in Hypatia is due to radiogenic and cosmogenic He 

fortuitously adding up. The majority of the He in Hypatia must be trapped with an isotopic 

composition close to that of He-Q. This means that a reliable concentration of cosmogenic 
3He cannot be easily derived in any of our samples, as the exact isotopic composition of the 

trapped Q-like He remains unknown. See next section for a discussion about the abundance of 

cosmogenic 3He. 
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3.2.2 Neon 

All temperature steps and total extractions are listed in Tables 2 and 3, and the totals and 

some selected data from individual steps are shown in Fig. 1. The 20Ne/22Ne ratios of the total 

gas measured in all three Nancy samples and the ratios of the three Zürich samples all vary 

between 10 and 11, with a weighted average of 11.0 ± 0.8. This average value is within the 

range of 20Ne/22Ne ratios of 10.1-10.7 reported for Ne-Q in many meteorite classes 

(Busemann et al., 2000; Ott, 2014). Although some individual temperature steps (Table 2, 

Fig. 1) likely indicate the release of some atmospheric Ne and one individual step in sample 

H-N2 gives a low value of 7.3±0.4 for 20Ne/22Ne (Table 2), we conclude that the major 

portion of the Ne in Hypatia represents Ne-Q. We find no clear evidence for the presence of 

Ne-HL or "exotic" Ne-G (essentially pure 22Ne) in Hypatia, as Kramers et al. (2013) reported.  

A contribution of excess 21Ne is visible in individual data points located at the right side of 

pure potential end-members (Fig. 1) and pointing towards the cosmogenic component 

(21Ne/22Ne=0.93, (Leya et al., 2001)). Concentrations of excess 21Ne in the bulk individual 

samples range between 5x10-16 and 4x10-15 mol.g-1. This excess 21Ne cannot be nucleogenic, 

as can be estimated by conservatively assuming all measured 4He to be radiogenic (see 

previous subsection 3.2.1) and a 21Nenuc/4Herad ratio of ~2.8 x 10-8 for a O-content of ca. 30 % 

(Cox et al., 2015). Furthermore, the excess 21Ne cannot have been produced on Earth by 

cosmic rays, as this would require an unreasonably long exposure age of 100 Ma at the find 

site using a production rate of 21 atoms of 21Ne per g of SiO2 per year (Niedermann, 2000), 

corrected for latitude and altitude of the find site (Stone, 2000) and a concentration of 21Ne-

producing target elements (Na, Al, Si, Mg) at the upper end of the range given by Kramers et 

al. (2013). Lower concentrations of these elements result in even higher terrestrial exposure 

ages. The 21Ne excess is thus interpreted to have been produced uniquely by cosmic-rays in an 

extra-terrestrial environment. It corresponds to nominal cosmic-ray exposure (CRE) ages of 

0.004 to 0.09 Ma. This age is a rough estimate based on the production rate model given in 

(Leya and Masarik, 2009), assuming a meteoroid radius < 3 m, and a concentration of 21Ne-

producing target elements (Na, Al, Si, Mg) at the upper end of the range given by Kramers et 

al. (2013), and no terrestrial contamination in any of these elements. 

The original concentration of 21Ne-producing target elements in Hypatia is, however, difficult 

to assess. Kramers et al. (2013) suggested that most of the oxygen and magnesium in Hypatia 

might be the result of secondary (i.e. terrestrial) encrustations and fracture fillings. Such 
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terrestrial contamination would imply that the above range of 21Ne exposure ages would be a 

lower limit to the real exposure age of Hypatia. In contrast to 21Ne, cosmogenic 3He is 

produced directly from C, the major element in Hypatia, essentially not affected by terrestrial 

contamination. A very conservative upper limit to the exposure age of Hypatia can therefore 

be calculated by assuming all measured 3He is cosmogenic, in contrast to what we concluded 

in section 3.2.1. Again using the model calculations by Leya and Masarik (2009) with 

appropriate target element concentrations (dominated by C in this case), and no loss of 

cosmogenic 3He, the measured concentrations of 3He (~ 4-11×10-14 mol/g) correspond to CRE 

ages of 0.05 to 0.25 Ma in meteoroids with a radius < 3 m. This range is also low, similar to 

the nominal 21Ne age range found above, in particular if we consider that likely in none of our 

samples more than perhaps 25% of the measured 3He is actually cosmogenic (section 3.2.1). 

This suggests that Hypatia was either exposed to cosmic-rays in space for only a very short 

time, or was instead part of a significantly larger object. The slight excess of 3He/4He relative 

to He-Q could, thus, easily be explained by the addition of some cosmogenic 3He. 

3.2.3 Argon 

Except for some very low temperature steps, 40Ar/36Ar ratios in all Hypatia samples are 

significantly lower than the atmospheric ratio with values as low as 0.23 ± 0.38 measured in 

each of the three CO2 laser extractions (H-N1, H-N2 & H-N3). Figure 2 shows the evolution 

of 40Ar/36Ar as a function of 36Ar released in sample H-N1. Table 2 and Fig. S5 (in 

supplementary material) show that 40Ar/36Ar ratios as low as 1±4 and 0.6±0.3 in individual 

steps were also observed in samples H-N2 and H-N3 respectively. 40Ar/36Ar ratios of the total 

gas released during the CO2 laser extractions are also very low with values of 3.5±1.7, 

8.7±0.2 and 3.0±0.1 for samples H-N1, H-N2, and H-N3, respectively. For the samples 

analyzed in Zürich, 40Ar/36Ar ratios are less well constrained due to sizeable blank 

corrections, but in samples H-Z3 and H-Z4 the values are clearly much below the atmospheric 

ratio with an upper limit of 4 in sample H-Z4. 

As already noted by Kramers et al. (2013), 40Ar/36Ar ratios below the atmospheric value 

provide clear evidence that Hypatia is extra-terrestrial. Values for the 38Ar/36Ar ratio are 

consistent both with the isotopic composition of Ar in phase Q (0.1873, (Busemann et al., 

2000)) and with the atmospheric ratio. However, the very low 40Ar/36Ar values demonstrate 

that atmospheric Ar can only be a minor component. 

3.2.4 Xenon and krypton 
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Xe and Kr were measured in sample H-N4 (8.4 mg) by stepwise extraction in an induction 

furnace. Data are shown in Table S1. Figure 3 shows the isotopic spectra of Xe released in the 

lowest temperature (400°C) and the highest temperature (1800-2200°C) steps, respectively. 

Xe released at low temperature is very similar to present-day atmospheric Xe and, therefore 

likely results from adsorbed atmospheric Xe. In contrast, the highest temperature step (Fig. 

3b) released essentially pure Xe-Q (note that scales on Fig. 3a and 3b are distinct) plus a clear 

excess of radiogenic 129Xe. Xe data presented here are in stark contrast to those reported by 

Kramers et al. (2013) where no excess radiogenic 129Xe was found and large errors on 

isotopic ratios prevented any clear distinction between an extra-terrestrial component (e.g. 

Xe-Q) and the atmosphere. This is also illustrated in the three-isotope diagram in Fig. 4. Our 

data are plotted together with a selection of extreme data reported by (Kramers et al., 2013) 

characterized by particularly low 129Xe/132Xe and 136Xe/132Xe values. These data were used to 

propose the presence of the exotic Xe-G component, which falls near the origin in Fig. 4. Our 

data, however, do not show any hint for the presence of this Xe-G component in Hypatia. 

The Kr data from analysis of H-N4 allow a less clear distinction between atmospheric Kr and 

Kr-Q. However, the Kr released in the high temperature steps is also fully consistent with the 

Kr-Q composition. Figure S6 (see supplementary material) is a three-isotope plot (83Kr/84Kr 

vs. 82Kr/84Kr) showing some data from our study together with a selection of extreme data 

points from Kramers et al. (2013). Again, there is no evidence from our data for the presence 

of exotic Kr-G in Hypatia. 

3.2.5 Nitrogen and carbon 

Results for the two bulk samples analyzed in Paris are very reproducible, showing that these 

pre-combusted carbon-rich samples were composed of ca. 95% diamond, with identical δ15N-

values of -100±1 ‰ (2σ) and low N-content (i.e. N/C-ratio) of 18 ppm. δ13C-values have an 

error-weighted mean of -3.44±0.14‰ (2 σ), a value in agreement with the result for the least 

contaminated samples of Kramers et al. (2013). Nitrogen data in all 3 stepwise CO2 laser 

extractions conducted in Nancy are listed in Table 2. The evolution of the isotopic 

composition of nitrogen released during stepwise extraction of H-N3 is shown in Fig. 5 and is 

also representative for the two other extractions (see Figure S7 in supplementary material for 

the isotopic composition of N2 in H-N1 and H-N2). In all samples, the major fraction (> 85 

%) of nitrogen is released at mid- to high temperature. Remarkably, all three Hypatia samples 

released a very light component with an essentially constant δ15N around -110‰ over up to 
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five high temperature steps. At lower temperatures, presumably some adsorbed atmospheric 

N (δ15N = 0 ‰) was released, but it seems very likely that in at least some of these steps a 

second indigenous component with a positive δ15N is also present. This component most 

clearly reveals itself in the first step of H-N3 (Fig. 5) with a δ15N value of +25 ± 3 ‰ and in 

the second steps of H-N1 and H-N2. Since these steps may also have been affected by some 

adsorbed atmospheric nitrogen, we conclude that the indigenous low-T component in Hypatia 

has a δ15N ratio around +25‰ or higher. As discussed below, such high δ15N values are 

common in meteorites and rare on Earth. Remarkably, total δ15N values of nitrogen extracted 

from samples in Nancy (e.g. -95 ± 4 ‰ (2σ) in sample H-N1; Table 2) agree well with values 

obtained in Paris on Hypatia diamonds (δ15N = -100 ± 1 ‰ (2σ)). The slightly higher δ15N 

value of -86±1 ‰ (1σ) for sample H-N3 (Table 2) is likely due to the presence of the heavy 

component released during the first heating step in Nancy and probably removed by the pre-

combustion at 600°C in Paris. For the subsequent detailed discussion, Fig. 5 shows ranges of 

δ15N values observed in different meteoritic materials. We note that nitrogen components 

similar to both the heavy and the light nitrogen found in Hypatia have been detected in 

various extra-terrestrial samples. 

3.2.6 Concentrations and elemental ratios 

The relative elemental abundances of noble gases and nitrogen can be diagnostic of their 

carrier phases (Ott, 2014). Figure 6 shows the mean (thick black line) and the ranges (grey 

area) of total concentrations of noble gases and nitrogen extracted from Hypatia samples 

analyzed in this study. Concentrations in the different samples are quite uniform, e.g. vary by 

less than a factor of 2.5 for 36Ar (3.2x10-11 mol/g). Volatile element abundances in bulk 

ureilites, a bulk Almahata Sitta ureilitic fragment (Murty et al., 2010) and bulk Goalpara 

(Göbel et al., 1978) ureilite, in carbon-rich residues extracted from ureilites (Rai et al., 

2003a), in a graphite inclusion from the Canyon Diablo iron meteorite (Matsuda et al., 2005), 

in bulk Monument Draw acapulcoite (McCoy et al., 1996) and in the Earth's atmosphere (in 

mol per g of atmosphere) are also shown for comparison. In our study and in references listed 

above all abundances are the results of total extractions and may include in some cases an 

atmospheric component. Concentrations of noble gases and nitrogen in Hypatia samples are 

considerably lower than the high values measured in phase Q. For example, 132Xe 

concentrations in phase Q reach values up to 1.5x10-11 mol/g (Busemann et al., 2000) versus 

4.3x10-14 mol/g in Hypatia. By contrast, the abundance levels and elemental pattern in 
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Hypatia is similar to that of bulk ureilites and also of the Canyon Diablo graphite nodule, 

apart from He that seems enriched relative to the graphite nodule with a mean value of 

4.7x10-10 mol/g. The abundance pattern in the Monument Draw acapulcoite is also broadly 

compatible with that of Hypatia for He, Ne, and Xe. Hypatia shows much lower volatile 

concentrations than carbon-rich residues extracted from ureilites despite the fact that Hypatia 

is mainly composed of carbon. These low concentrations prevent us from directly linking 

Hypatia to the carbon-rich part of ureilites (see discussion section 4.2). 

4. Discussion 

The data presented here undoubtedly confirm and strengthen the conclusion by Kramers et al. 

(2013) that Hypatia is an extraterrestrial material. Apart from the confirmation of very low 
40Ar/36Ar ratios, this is also clearly shown by the isotopic composition of He, Ne, and Xe, 

which in many extraction steps and bulk samples is essentially identical to the Q component, 

ubiquitous in many meteorite classes. Furthermore, given that values of δ15N below  

-40 ‰ have never been reported in terrestrial samples and that the nitrogen isotopic 

composition in Hypatia is similar to values found in different type of meteoritic materials, a 

δ15N value of -110‰ for more than 85% of the N budget (Table 2) is a new convincing piece 

of evidence for the extraterrestrial nature of Hypatia. Elemental abundances of the 

ultravolatile elements analyzed here are also very different from the terrestrial atmospheric 

pattern and are in the range observed for different meteoritic samples (Fig. 6). Furthermore 

terrestrial impact diamonds occur in a geological context where graphite-bearing target rocks 

are present such as gneisses in the Ries, Popigai, and Lappajärvi craters (Langenhorst et al., 

1999). In case of Hypatia, the potential target is made of Nubian sandstone. The absence of 

graphite-bearing target rock in this area further supports the conclusions that Hypatia must be 

extraterrestrial. 

Although the indications for ‘exotic’ extrasolar components reported by Kramers et al. 

(2013), discussed below, are tenuous, there are further, quite robust differences between the 

noble gas data obtained by these authors and the present dataset, and also one marked 

similarity. (i) Their data for Ar, Kr, and Xe are dominated by terrestrial atmospheric 

contamination, which persisted to high temperatures in the degassing experiments. (ii) They 

found no excess 129Xe. (iii) While their inferred abundances of the extraterrestrial noble gas 

components for He, Ar, and Xe are 5 to 10 times lower than those determined in the present 

study, their corresponding He/Xe and Ar/Xe ratios are very similar to our data (and 
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significantly higher than those in typical Q gas). The grains analyzed by Kramers et al. (2013) 

came from a different subsample of Hypatia to ours, and it is thus likely that the stone is 

heterogeneous on a mm to cm scale with regard to its iodine and trapped noble gas 

abundances, but homogeneous with regard to the composition of its dominant extraterrestrial 

noble gas component. 

In the following discussion we will explore possible links between Hypatia and extra-

terrestrial objects from which it may originate based on the findings presented above. 

4.1 A cometary origin for Hypatia? 

Our study does not confirm the presence of any G noble gas component as reported by 

Kramers et al. (2013). The presence of "exotic" G-gases, normally found in presolar SiC 

grains, could have been a clue to a cometary origin of Hypatia under the premise that 

cometary matter should be rich in primordial noble gas components produced by 

nucleosynthesis in stars. In further contrast to Kramers et al. (2013) we unequivocally show 

that the analyzed fragments of Hypatia are rich in isotopically “normal” Q gases, a major 

primordial noble gas component in many different meteorite classes originating from the 

asteroid belt. Furthermore, only little is known about volatile elements in comets and for 

example Ne isotopically similar to Ne-Q in chondrites has been measured in Stardust samples 

(Marty et al., 2008). 

4.2 Possible links of Hypatia with known carbon-rich meteoritic materials 

Because phase-Q noble gases are ubiquitous in many meteorite classes (Ott, 2014), nitrogen 

isotopic composition may be more useful for exploring possible links between Hypatia and 

known extraterrestrial objects, as N isotopic compositions are very variable in different 

extraterrestrial samples (Füri and Marty, 2015). On the right hand side of Fig. 5, δ15N ranges 

of various C-rich phases in meteorites are shown. The very light (δ15N ≈ -110‰) and 

reproducible nitrogen released from all three analyzed Hypatia samples at high temperature is 

reminiscent of a main component measured in ureilitic diamonds (δ15N < -100‰; (Rai et al., 

2003b)). In addition, the likely minor N component released at low to mid temperatures, with 

δ15N > 25 ‰, is reminiscent of an isotopic signature of a component with δ15N higher than 

19 ‰ and reaching values up to 100 ‰ (Rai et al., 2003b; Yamamoto et al., 1998) released at 

low temperature from graphite in ureilites. It is worth noting that such values are released at 

low temperatures which is again consistent with our observations (Rai et al., 2003b). 
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Additionally, trapped noble gases with an isotopic composition similar to the Q component 

and with elemental abundances ratios more similar to those in Hypatia than in phase Q are 

present in ureilites (Rai et al., 2003a). Note here that the bulk δ13C value of -3.4 ± 0.1 ‰ 

measured in diamond is also in the range of values measured in ureilites (Grady and Wright, 

2003). Unlike in Hypatia, however, despite an active search, no excess 129Xe from the decay 

of 129I has ever been reported in ureilites (Göbel et al., 1978; Rai et al., 2003a) (Fig. 4). This 

latter observation suggests that Hypatia may not be connected to ureilites after all. 

Grady and Wright (2003) found isotopically light N in the range of δ15N = -50 to -20 ‰ in 

graphite nodules of iron meteorites. Such nodules are mainly found in IAB and IIICD types of 

meteorites (Benedix et al., 2000). While this range of δ15N is not overlapping with that of the 

main N component in Hypatia (Fig. 5), C-rich samples of iron meteorites appear to contain 

nitrogen with quite heterogeneous δ15N values. For example, isotopically very light nitrogen 

with δ15N < -82 ‰ has been reported in Copiapo (IAB) (Ponganis and Marti, 2007). Notably, 

radiogenic 129Xe as well as trapped noble gases similar to Q have also been found in graphite 

nodules of Canyon Diablo (IAB) (Matsuda et al., 2005). Furthermore Kramers et al. (2013) 

reported the presence in Hypatia of bright inclusions composed of a Fe-Ni-Cr alloy and 

troilite reminiscent of the major constituents of iron meteorites. The IAB iron meteorite ALH 

77283 contains also troilite-graphite-schreibersite-cohenite inclusions rich in diamond-

lonsdaleite nodules that may be similar to Hypatia (Clarke et al., 1981). Finally the bulk δ13C 

value of -3.4±0.1 ‰ measured in this study is also in the range of -30 to +4 ‰ measured in 

graphite nodules in iron meteorites even if this value, given the large range measured among 

different samples, is not diagnostic of this type of extra-terrestrial material (Grady and 

Wright, 2003). Graphite rich parts of iron meteorites may thus appear linked to Hypatia, 

although the heterogeneity of the N isotopic composition in such samples prevents us to 

unequivocally interpret Hypatia as a graphite nodule from an iron meteorite. 

Acapulco and Lodran, the type specimens of the primitive achondrite groups of acapulcoites 

and lodranites contain small µm-sized graphite nodules or carbonized veins with isotopically 

often very light nitrogen (δ15N as low as -166 ‰ in Acapulco (Charon et al., 2014)). 

Furthermore, acapulcoites and lodranites also carry noble gases of Q-composition as well as 

excess 129Xe (McCoy et al., 1997; Palme et al., 1981). Acapulcoites and lodranites may, 

therefore, also share a genetic link with Hypatia. 

Hypatia is cm-sized (Barakat, 2012). Only graphite nodules in iron meteorites typically reach 
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this size. Carbon-rich phases in other known meteoritic classes discussed here (ureilites, 

acapulcoites and lodranites) are much smaller (µm- to mm-sized) except in one case where a 

large cm-sized carbon-rich nodule, maybe containing diamonds, has been found in the 

Portales Valley (H6) chondrite (Ruzicka et al., 2000). If size matters to establish a link 

between Hypatia and other know extraterrestrial objects none of the candidates discussed 

here, except graphite nodules from iron meteorites, match this feature (Table 4). 

In summary, while Hypatia clearly is a different type of material than any of the carbon-rich 

phases discussed in this section, its noble gas and nitrogen signatures share many 

characteristics with some of these phases, although none matches perfectly (see Table 4 for a 

comparison between the features met in Hypatia and those in known extraterrestrial carbon-

rich phases). Therefore, it seems possible that the volatile inventory of Hypatia or its parent 

material is related to the volatiles in these carbon-rich phases of known meteorite classes and 

that all these carbon-rich lithologies may have sampled the same geochemical reservoir. 

4.3 A link between Hypatia and the Libyan Desert Glass? 

Kramers et al. (2013) suggested that Hypatia is a remnant of the impactor that created the 

Libyan Desert Glass. Irrespective of whether Hypatia is of cometary or asteroidal origin, their 

main argument for a causal relation between Hypatia and LDG was that a large object was 

required to generate diamonds by impact. The shock pressures required to produce impact 

diamonds from graphite must generally exceed about 25 - 30 GPa. In case of a terrestrial 

impact the projectile should be at least some meters in diameter. This would be consistent 

with the likely minimum size of Hypatia inferred from the cosmogenic noble gases as 

discussed further down in this paragraph. A crater or a crater strewn field would also result 

(Collins et al., 2005). Such pressures are indeed recorded in bedrocks of LDG, however a 

crater or a crater strewn field related to Hypatia is not known. It should also be noted that so 

far some 40 meteorites of different classes (named “Great Sand Sea n°XX ”), including 

ordinary chondrites, iron meteorites and lodranites, have been found near the LDG area. The 

find location is thus not a compelling argument for a causal relationship. The XRD and TEM 

studies presented here also do not allow us to directly decide whether the diamonds in 

Hypatia formed upon impact on Earth or by an earlier collision in space, for example during 

the event which ejected the Hypatia-bearing meteoroid from its parent body. However, 

nitrogen in Hypatia is not isotopically equilibrated between the low-to-medium temperature 

release of N with a δ15N component around +25 ‰ or higher, and a medium-to-high 
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temperature component depleted in 15N (δ15N values close to -110 ‰). Part of the nitrogen 

released in the first heating steps is probably of terrestrial origin, but likely not all since δ15N 

values above 20 ‰ are extremely rare on Earth but common in extraterrestrial carbon-rich 

material, e.g. insoluble organic matter in carbonaceous chondrites or low to medium heating 

steps of ureilites (Rai et al., 2003b). The high temperature extraction of isotopically light N is 

consistent with its occurrence in diamond as N is the most abundant impurity found in 

diamonds and its substitution in the place of carbon explains the difficulty, and thus the high-

temperature required, to release it from the diamond structure (Kaiser and Bond, 1959). 

Hence, the isotopic disequilibrium of N among different carbon-rich phases implies that, in 

Hypatia, diamonds are unlikely to have formed by shock of the C-rich material during 

atmospheric entry. In the parent meteoroid, diamonds hosting light N likely co-existed with 

non-diamond, C-rich phases hosting heavy N before encounter with Earth, as observed for 

instance in ureilitic C-rich veins. Whatever the processes involved, the dichotomy in δ15N 

between diamond-rich and amorphous carbon-rich lithologies must have developed in space 

otherwise the impact and the production of diamond would have homogenised the isotopic 

composition of nitrogen. Thus, the disequilibrium in nitrogen isotopic compositions argues 

against production upon impact on Earth. The very low nominal noble gas exposure ages of 

Hypatia may also be considered in this context. Because the 22Ne/21Ne ratio of the 

cosmogenic component could not be determined due to the dominant presence of trapped Ne 

and because so far no cosmogenic radionuclide data for Hypatia is available, information 

about the shielding of Hypatia during its journey towards Earth (i.e. the size of the Hypatia 

parent meteoroid and the preatmospheric depth of Hypatia within that meteoroid) is 

unconstrained. The exposure age of Hypatia on the order of a mere 100,000 years was 

therefore estimated by assuming a production rate valid for a “typical” meteoroid size < 3 m. 

Hence, the qualification of this number as “nominal exposure age”. True meteorite exposure 

ages considerably less than a million years are very rare. If Hypatia had been brought to Earth 

as part of an iron meteorite, its exposure age would be expected to be at least 10-20 Ma, but 

more likely to be longer than 100 Ma (Herzog and Caffee, 2014). Also among stony 

meteorites, exposure ages of less than 1 Ma are only found for some types of carbonaceous 

chondrites (Nishiizumi and Welten, 2005), with most other ages being at least a few Ma and 

ranging up to some 100 Ma. Thus, it seems likely that the low nominal exposure age of 

Hypatia actually is the result of a much larger shielding, and, hence, larger meteoroid size, 

than assumed above. 
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While no clear-cut conclusion on the size of the Hypatia parent meteorite can be drawn from 

these considerations, it seems rather likely that it was a body of at least a few meters in 

diameter. On the other hand, if the parent meteorite/asteroid had been even considerably 

larger, as would be implied by a supposed connection with the LDG event, then Hypatia 

would have to originate from the outermost few meters of this body. Otherwise, the low but 

measurable concentrations of cosmogenic 21Ne could not have been produced even during 

billions of years of cosmic ray exposure. The example of the Canyon Diablo iron meteorite 

shows that surviving large chunks of a large bolide are indeed likely to originate from the rear 

near-surface portions of the impacting projectile (Bjork, 1961). In summary, the concentration 

of cosmogenic 21Ne in Hypatia hints at a parent object of at least a few meters in diameter, but 

not necessarily large enough to have been able to create the LDG or to produce the shock-

diamonds upon impact on Earth. Nevertheless, the suggestion by Kramers et al. (2013), that 

more fragments similar to the Hypatia stone might be found near the site, is further supported 

by the low cosmogenic 21Ne concentration. 

5. Summary and Conclusions 

The analyses presented here confirm conclusions by Kramers et al. (2013) that the enigmatic 

pebble Hypatia represents an unusual type of extraterrestrial material. In addition to the clear 

cut evidence pointed out by Kramers et al. (2013) (e.g. 40Ar/36Ar ratios below the atmospheric 

value), our study shows: 3He/4He, 20Ne/22Ne, Xe isotopes, and likely Kr and Ar close to the 

isotopic composition of the ubiquitous component phase Q in meteorites, isotopic 

composition of nitrogen similar to components found in ureilites and maybe in graphite 

inclusions of iron meteorites or acapulcoites, and finally small concentrations of cosmogenic 
21Ne produced in space. We also found significant differences from data previously published 

on Hypatia. In particular we found no evidence for the presence of any presolar signature (e.g. 

the G component) that was used to infer a cometary origin for Hypatia. At this time, we 

cannot definitively associate Hypatia with any known type of meteorites as each candidate 

considered here (ureilites, graphite nodules in iron meteorites or in acapulcoites/lodranites) 

fails to reproduce all features of the ultravolatile elements determined in this study (Table 4). 

However, from our comparisons it appears that Hypatia may be related to differentiated 

cosmochemical objects and thus might present a great opportunity to understand the origin 

and mode of survival of primordial noble gases and nitrogen in such objects (Wieler et al., 

2006). 
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Figure captions 

Figure 1: Isotopic composition of neon in Hypatia samples. Empty symbols are for individual 

heating steps and filled symbols for bulk samples. The isotopic compositions of Ne in Earth's 

atmosphere, Ne-HL, Ne-Q and Ne-G are shown as references (Ott, 2014). Arrow shows the 

tendency toward the cosmogenic component (21Ne/22Ne ≈ 0.9; (Leya et al., 2001)). Errors at 

1σ. 

Figure 2: Evolution of the 40Ar/36Ar ratio during step-heating of the H-N1 sample. Note the 

log-scale for the y axis showing very low ratios well below the atmospheric value of 298.56 

(Lee et al., 2006). Ranges correspond to 1σ. 

Figure 3: Isotopic spectra of Xe released at 400°C (a) and between 1800 and 2200°C (b) 

during the induction furnace experiment. The isotopic composition is expressed with the delta 

notation relative to the isotopic composition of Xe in Solar Wind (Meshik et al., 2014) 
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! ×1000). Grey triangles in (a) represent the isotopic 

composition of Earth's atmosphere and grey triangles in (b) represent the isotopic composition 

of Xe in phase Q (Busemann et al., 2000). Errors at 2σ. 

Figure 4: Three-isotope plot of xenon. Small black-filled circles are for individual heating 

steps, the large black-filled circle corresponds to the total of all extraction steps. Reference 

values of Solar Wind (SW) xenon, Xe-Q, G-Xe, and atmospheric Xe are shown for 

comparison (Ott, 2014) as well as the mean value of the 129Xe/132Xe ratio measured in 

ureilites (Rai et al., 2003a). A representative set of data by (Kramers et al., 2013) are shown 

with small grey axes and error bars. Error bars are at 2σ. 

Figure 5: Ranges of isotopic compositions of nitrogen released during step-heating of the  

H-N3 sample. Ranges for individual steps correspond to errors at 1σ. 

Figure 6: Range of elemental abundances (in mol/g) of volatile elements in Hypatia compared 

to several types of meteorites. The range for 4He abundances is from the analysis of H-Z1 to 

H-Z5 assuming that all 4He is trapped. The range for 20Ne (trapped) abundances is from H-Z2 

to H-Z5 and from H-N1 to H-N3. Value from H-Z1 analysis is rejected because it is 

unrealistically low due to high corrections due to the presence of water. Range for 36Ar is 

from H-Z1 to H-Z5 and from H-N1 to H-N3. Range for N2 is from H-N1 to H-N3. Range for 
84Kr is from the unique analysis on sample H-N4 and the range corresponds to a relative high 

uncertainty due to a perfectible calibration of the Kr content of the standard bottle. However, 
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it does not change any conclusion of this study. Only the value of 132Xe amount obtained 

during analysis of sample H-N4 is shown. See text for details about references. 
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Table captions 

Table 1: Analytical techniques and list of chemical species analyzed in Hypatia samples 
during this study. 

Table 2: Data of Ne, Ar, and N2 measured in Hypatia samples H-N1 to H-N3. Errors at 1σ. 

Table 3: Data of He, Ne, and Ar measured in Hypatia samples H-Z1 to H-Z5. Errors at 1σ. 

Table 4: C-rich meteoritic lithologies that partially match the features observed in Hypatia. 
The "✓" symbol denotes a match with a feature, "✖" a dismatch and "-" the difficulty to 
conclude. See text for details and references. 
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Methods: X-ray diffraction and Transmission Electron Microscopy (TEM)  

Mineralogical characterization of Hypatia fragments was done by X-ray powder diffraction 

and TEM, using a Seifert-FPM XRD7 diffractometer (Cu-Kα radiation) and a 200 kV ZEISS 

LEO922 TEM at the University of Jena (Germany). For comparison, we applied the same 

techniques on impact diamonds from the Popigai crater (Koeberl et al., 1997), where impact 

diamonds were first discovered in terrestrial impact rocks (Masaitis et al., 1972). Samples 

were crushed in liquid nitrogen to obtain a powder for the X-ray diffraction experiment. The 

powder X-ray diffraction experiment on Hypatia was conducted for three days in order to 

obtain a pattern with a signal to noise ratio higher than 50 for the 111 reflection of diamond. 

Small fractions of the crushed samples were loaded on perforated carbon grids for TEM 

observations. Conventional bright-field/dark-field and high-resolution TEM imaging were 

used to characterize the micro-structure of Hypatia, which in turn provides clues to its 

deformation and transformation effects (Langenhorst and Deutsch, 2012; Langenhorst et al., 

1999). 

Supplementary figures 

 

 
Supplementary Figure S1: Photography of Hypatia (Kramers et al., 2013) 

 



 
Supplementary Figure S2: X-ray diffraction pattern of Hypatia in comparison to synthetic 

diamonds and impact diamonds from the Popigai structure. 

 

 

 

 
Supplementary Figure S3: Bright-field TEM image of multiple deformation bands in 

Hyptia. 

 



 
Supplementary Figure S4: High resolution TEM image showing the onion-shaped 

graphite (0001)gr in the surface of diamond (111)dia. The absence of orientation 

relationship suggests that graphite is here a product of retrograde annealing of 

diamond. 

 



 
Supplementary Figure S5: Evolution of the 40Ar/36Ar ratio during step-heating of the H-

N2 and H-N3 samples. Ranges are at 1σ . 
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Supplementary Figure S6: Three-isotope diagram of krypton. Heating steps of H-N4 are 

shown with black dots and Q, Air and HL isotopic compositions are from (Ott, 2014). 

Withe dots with dotted error bars are extreme data taken from (Kramers et al., 2013). 

Error bars are 2σ . 
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Supplementary Figure S7: Ranges of isotopic compositions of nitrogen released during 

step-heating of the H-N1 (a) and H-N2 (b) samples. Ranges for individual steps 

correspond to errors at 1σ . Ranges of isotopic composition of N in C-rich meteoritic 

materials are shown for comparison. See main text for references. 
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Supplementary Table S1: Data of bulk N and C isotope measurements conducted in IPG-Paris. Errors at 2σ . 

 



Supplementary Table S2: Data of Kr and Xe measured in Hypatia sample H-N4. Errors at 2σ . 
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